Güdüm sistemi, bir füze, uydu, roket, uçak, helikopter, gemi veya benzeri aracın, iki veya üç boyutlu ortamdaki bir konumdan ayrılarak varmaya programlandığı bir başka konuma ulaşabilmesini sağlayan elektromekanik aygıt veya aygıtlara verilen genel isimdir. Özellikle askeri terminolojide bu söylem, herhangi bir insan kontrolü olmaksızın otonom seyir yeteneğine sahip araçlar için kullanılır. Operasyonunda yüksek oranda beşeri katkıya ihtiyaç duyan benzeri sistemlere ise navigasyon veya seyrüsefer sistemleri denir ve bunlar güdüm sistemlerinden farklı bir kategoride değerlendirilirler.
Güdüm sistemleri askeri alanda ilk olarak II. Dünya Savaşı'nda Almanların geliştirdiği V-1 füzesinde kullanılmıştır. Bu füzede kullanılan güdüm sistemi uçuş yönünü sabit tutmak için takılan basit bir jiroskop, uçuş süresi ve dolayısıyla hedefe mesafeyi belirlemek için kullanılan bir hız sensörü, yüksekliği belirlemek için kullanılan bir altimetre ve tüm bu güdüm elemanlarından gelen veriyi birleştirip işlemek suretiyle uçuş kontrol yüzeylerine aktararak füzeyi hedefe yönlendiren alt sistemlerden oluşmuştur.
Bir güdüm sistemi üç ana görev grubundan oluşur: Girdi grubu, işlem grubu ve çıktı grubu. Girdi grubu çeşitli anten, mikrofon, alıcı, kamera, sensör ve diğer ham veri giriş modüllerinden oluşabilir. İşlem grubu bir veya daha fazla merkezi işlem birimi (CPU) ile elektronik regülasyon, manipülasyon ve destek ünitelerinden meydana gelir ve işlevi girdi grubu aygıtlarından gelen ham veriyi belirli algoritmalara göre derlemek, gerekirse önceden oluşturulmuş veri tabanlarındaki değerleri ile karşılaştırmak ve otonom olarak yönetilen aracın yön, belirli bir referans noktası ya da hedefe göre konum, hız, ivme, vb sayısal değerlerinin değiştirilip değiştirilmemesi veya örneğin araç üzerindeki bir harp başlığının aktive edilme zamanının gelip gelmediğine karar vermektir. Verilen kararlar sürekli olarak çıktı grubu aygıtlarına aktarılır. Bunlar arasında motorlar, servo ve aktüatörler, pompalar, türbinler, elektromekanik aygıtlar, fünyeler, verici antenler, kanat ve kanatçıklar olabilir. Bu sistem elemanları, işlem grubundan gelen komutlara göre ve gerçek zamanlı olarak güdümlenen aracın görevin gerektirdiği hareketleri yüksek doğrulukla yerine getirmesini sağlar.
Güdüm sistemleri 3 temel bölümden oluşur: mevcut konumu izleyen navigasyon, navigasyon verilerini ve hedef bilgilerini doğrudan uçuş kontrolüne "nereye gideceğini" kontrol etmek için kullanan güdüm ve aerodinamik ve/veya motor kontrollerinde değişiklik yapmak için rehberlik komutlarını kabul eden kontrol.
Navigasyon, 1711'de Boylam ödülü ile odak noktası olmuş bir bilim ve nerede olduğunuzu belirleme sanatıdır. Navigasyon yardımcıları ya "sabit" bir referans noktasından (ör. yer işareti, kuzey yıldızı, LORAN İşareti) hedefe "göreceli" konumu (ör. radar, kızıl ötesi, ...) ölçer veya bilinen bir konumdan/başlangıç noktasından (örn. IMU) “hareket”i izler. Günümüzün karmaşık sistemleri, mevcut konumu belirlemek için pek çok çözüm kullanır. Örneğin, günümüzün en gelişmiş navigasyon sistemleri Anti-balistik füze içindedir; RIM-161 Standart Füze 3, hızlandırma aşamasında GPS, IMU ve yer segmenti verilerini ve engelleme hedeflemesi için göreceli konum verilerini kullanır. Karmaşık sistemlerin genellikle sapmayı düzeltmek, doğruluğu artırmak (örn. hedefe göreceli olarak) ve sistem arızasını gidermek için birçok yedeklemesi vardır. Navigasyon sistemleri bu nedenle hem sistemin içinde hem de veya harici (ör. yer esaslı güncelleme) birçok farklı sensörden girdileri alır. Kalman filtresi, mevcut konumu çözmek için navigasyon verilerini (birden çok sensörden) birleştirmeye yönelik en yaygın çözümü verir. Örnek navigasyon yaklaşımları şunlardır:
Güdüm bir aracın "sürücüsü"dür. Navigasyon sisteminden (neredeyim) girdi alır ve aracın hedefine ulaşmasını sağlayacak (aracın çalışma kısıtlamaları dahilinde) uçuş kontrol sistemine sinyaller göndermek için hedef bilgilerini (nereye gitmek istiyorum) kullanır. Güdüm sistemleri için "hedefler" bir veya daha çok durum vektörüdür (konum ve hız) ve atalet veya göreceli olabilir. Motorlu uçuşda güdüm, uçuş kontrolü için sürekli olarak gidilen yönleri hesaplar. Örneğin, Uzay Mekiği, ana motoru devre dışı bırakmak için belirli bir rakımı, hız vektörünü ve gamayı hedefler. Benzer şekilde, bir Kıtalararası balistik füze de bir vektörü hedefler. Hedef vektörler, görevi yerine getirmek için geliştirilir ve önceden planlanabilir veya dinamik olarak oluşturulabilir.
Kontrol. Uçuş kontrolü ya aerodinamik olarak ya da motorlar gibi güçlü kontroller aracılığıyla yapılır. Güdüm, uçuş kontrolüne sinyaller gönderir. Dijital Otopilot (DAP), güdüm ve kontrol arasındaki arayüzdür. Güdüm ve DAP, her uçuş kontrolü için kesin talimatın hesaplanmasından sorumludur. DAP, uçuş kontrollerin durumu hakkında güdüme geri bildirim sağlar.