ARRB1 |
Нинди таксонда бар |
H. sapiens[d][1] |
Кодлаучы ген |
ARRB1[d][1] |
Молекуляр функция |
GTPase activator activity[d][2], histone acetyltransferase activity[d][3], enzyme inhibitor activity[d][4], связывание с рецептором инсулино-подобного фактора роста[d][5], transcription factor binding[d][3], mitogen-activated protein kinase kinase binding[d][6], clathrin adaptor activity[d][6], protein phosphorylated amino acid binding[d][6], cysteine-type endopeptidase inhibitor activity involved in apoptotic process[d][6], связывание с белками плазмы[d][7][8][9][…], AP-2 adaptor complex binding[d][6], alpha-1B adrenergic receptor binding[d][6], Связывание с рецептором вазопрессина V2[d][6], phosphoprotein binding[d][6], angiotensin receptor binding[d][2], ubiquitin protein ligase binding[d][5], arrestin family protein binding[d][10][6], signaling receptor binding[d][6], enzyme binding[d][6], estrogen receptor binding[d][6], alpha-1A adrenergic receptor binding[d][6], follicle-stimulating hormone receptor binding[d][6], transmembrane transporter binding[d][6], clathrin binding[d][6] һәм G protein-coupled receptor binding[d][11] |
Күзәнәк компоненты |
цитоплазма[6][6][2][…], цитозоль[d][6][6], postsynaptic membrane[d][6], мембрана[d][6], төш[6][6][3], cell projection[d][6], дендритный шипик[d][6], heterotrimeric G-protein complex[d][12], хроматин[d][3], күзәнәк мембранасы[d][13][6], внутренний компонент клетки[d][14], нуклеоплазма[d][6], clathrin-coated pit[d][6], псевдоподия[d][6][6], постсинаптическое уплотнение[d][6], Golgi membrane[d][6], lysosomal membrane[d][6], basolateral plasma membrane[d][6], cytoplasmic vesicle membrane[d][6], цитоплазматическая везикула[d][6][2], ядерные тельца[d][6], эндосома[d][6], төш[6][6][3][…], цитоплазма[6][6][15][…], цитозоль[d][6][6][11], күзәнәк мембранасы[d][13][6][11] һәм цитоплазматическая везикула[d][6][2][11] |
Биологик процесс |
positive regulation of Rho protein signal transduction[d][2], regulation of G protein-coupled receptor signaling pathway[d][6], positive regulation of receptor internalization[d][9], transcription by RNA polymerase II[d][3][6], stress fiber assembly[d][2], follicle-stimulating hormone signaling pathway[d][6], platelet activation[d][6], positive regulation of cysteine-type endopeptidase activity involved in apoptotic process[d][6], negative regulation of GTPase activity[d][6], positive regulation of ERK1 and ERK2 cascade[d][6][16], positive regulation of insulin secretion involved in cellular response to glucose stimulus[d][6], proteasome-mediated ubiquitin-dependent protein catabolic process[d][5], фототрансдукция[d][6], ДНК-зависимая регуляция транскрипции[d][14], транскрипция, ДНК-зависимая[d][14], positive regulation of peptidyl-serine phosphorylation[d][6], negative regulation of interleukin-8 production[d][17], protein ubiquitination[d][5], protein transport[d][6], negative regulation of protein phosphorylation[d][6], positive regulation of smooth muscle cell apoptotic process[d][6], positive regulation of histone H4 acetylation[d][3], positive regulation of protein binding[d][6], negative regulation of NF-kappaB transcription factor activity[d][17], positive regulation of protein ubiquitination[d][6], G protein-coupled receptor internalization[d][18][19], negative regulation of cysteine-type endopeptidase activity involved in apoptotic process[d][6], эндоцитоз[d][6], negative regulation of interleukin-6 production[d][17], positive regulation of histone acetylation[d][3], negative regulation of protein ubiquitination[d][17], negative regulation of ERK1 and ERK2 cascade[d][6], negative regulation of signal transduction[d][6], положительная регуляция транскрипции РНК полимеразой II промотор[d][3][6], передача сигнала[d][6], positive regulation of GTPase activity[d][6], апоптоз[d][6], membrane organization[d][6], regulation of apoptotic process[d][6], ubiquitin-dependent protein catabolic process[d][10][6], negative regulation of Notch signaling pathway[d][10][6], G protein-coupled receptor signaling pathway[d][6][6], positive regulation of protein phosphorylation[d][20][6], позитивная регуляция пролиферации клеток[d][6], негативная регуляция апоптоза[d][6], negative regulation of neuron apoptotic process[d][6], histone acetylation[d][6], G protein-coupled receptor internalization[d][19][18][11], negative regulation of Notch signaling pathway[d][10][6][11] һәм positive regulation of ERK1 and ERK2 cascade[d][6][16][11] |
ARRB1 (ингл. ) — аксымы, шул ук исемдәге ген тарафыннан кодлана торган югары молекуляр органик матдә.[21][22]
- ↑ 1,0 1,1 UniProt
- ↑ 2,0 2,1 2,2 2,3 2,4 2,5 2,6 Milligan G., Lefkowitz R. J. beta-Arrestin 1 and Galphaq/11 coordinately activate RhoA and stress fiber formation following receptor stimulation // J. Biol. Chem. / L. M. Gierasch — Baltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2005. — ISSN 0021-9258; 1083-351X; 1067-8816 — doi:10.1074/JBC.M412924200 — PMID:15611106
- ↑ 3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8 Ma L. A nuclear function of beta-arrestin1 in GPCR signaling: regulation of histone acetylation and gene transcription // Cell — Cell Press, Elsevier BV, 2005. — ISSN 0092-8674; 1097-4172 — doi:10.1016/J.CELL.2005.09.011 — PMID:16325578
- ↑ Lohse M. J., Lefkowitz R. J., Caron M. G. beta-Arrestin: a protein that regulates beta-adrenergic receptor function // Science / H. Thorp — Northern America: AAAS, 1990. — ISSN 0036-8075; 1095-9203 — doi:10.1126/SCIENCE.2163110 — PMID:2163110
- ↑ 5,0 5,1 5,2 5,3 Lefkowitz R. J. {beta}-Arrestin is crucial for ubiquitination and down-regulation of the insulin-like growth factor-1 receptor by acting as adaptor for the MDM2 E3 ligase // J. Biol. Chem. / L. M. Gierasch — Baltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2005. — ISSN 0021-9258; 1083-351X; 1067-8816 — doi:10.1074/JBC.M501129200 — PMID:15878855
- ↑ 6,00 6,01 6,02 6,03 6,04 6,05 6,06 6,07 6,08 6,09 6,10 6,11 6,12 6,13 6,14 6,15 6,16 6,17 6,18 6,19 6,20 6,21 6,22 6,23 6,24 6,25 6,26 6,27 6,28 6,29 6,30 6,31 6,32 6,33 6,34 6,35 6,36 6,37 6,38 6,39 6,40 6,41 6,42 6,43 6,44 6,45 6,46 6,47 6,48 6,49 6,50 6,51 6,52 6,53 6,54 6,55 6,56 6,57 6,58 6,59 6,60 6,61 6,62 6,63 6,64 6,65 6,66 6,67 6,68 6,69 6,70 6,71 6,72 6,73 6,74 6,75 6,76 6,77 6,78 6,79 6,80 6,81 6,82 GOA
- ↑ Berthouze M., Lefkowitz R. J. Beta-arrestin-dependent signaling and trafficking of 7-transmembrane receptors is reciprocally regulated by the deubiquitinase USP33 and the E3 ligase Mdm2 // Proc. Natl. Acad. Sci. U.S.A. / M. R. Berenbaum — [Washington, etc.], USA: National Academy of Sciences [etc.], 2009. — ISSN 0027-8424; 1091-6490 — doi:10.1073/PNAS.0901083106 — PMID:19363159
- ↑ Innamorati G., Piccirillo R., Bagnato P. et al. The melanosomal/lysosomal protein OA1 has properties of a G protein-coupled receptor // Pigment Cell Melanoma Res. — Wiley-Blackwell, 2006. — ISSN 1755-1471; 1755-148X; 0893-5785; 1600-0749 — doi:10.1111/J.1600-0749.2006.00292.X — PMID:16524428
- ↑ 9,0 9,1 Scholten D. J., Canals M. Ubiquitination of CXCR7 controls receptor trafficking // PLOS ONE / PLOS ONE Editors — PLoS, 2012. — ISSN 1932-6203 — doi:10.1371/JOURNAL.PONE.0034192 — PMID:22457824
- ↑ 10,0 10,1 10,2 10,3 Puca L., Brou C., Israël A. Α-arrestin 1 (ARRDC1) and β-arrestins cooperate to mediate Notch degradation in mammals // J. Cell Sci. — The Company of Biologists, 2013. — ISSN 0021-9533; 1477-9137 — doi:10.1242/JCS.130500 — PMID:23886940
- ↑ 11,0 11,1 11,2 11,3 11,4 11,5 11,6 Livstone M. S., Thomas P. D., Lewis S. E. et al. Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium // Brief. Bioinform. — OUP, 2011. — ISSN 1467-5463; 1477-4054 — doi:10.1093/BIB/BBR042 — PMID:21873635
- ↑ Prossnitz E. R. Arrestin binding to the G protein-coupled N-formyl peptide receptor is regulated by the conserved "DRY" sequence // J. Biol. Chem. / L. M. Gierasch — Baltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2000. — ISSN 0021-9258; 1083-351X; 1067-8816 — doi:10.1074/JBC.C000314200 — PMID:10823817
- ↑ 13,0 13,1 Miller W. E., Lefkowitz R. J., Caron M. G. Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes // Science / H. Thorp — Northern America: AAAS, 1999. — ISSN 0036-8075; 1095-9203 — doi:10.1126/SCIENCE.283.5402.655 — PMID:9924018
- ↑ 14,0 14,1 14,2 GOA
- ↑ Prossnitz E. R. Arrestin binding to the G protein-coupled N-formyl peptide receptor is regulated by the conserved "DRY" sequence // J. Biol. Chem. / L. M. Gierasch — Baltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2000. — ISSN 0021-9258; 1083-351X; 1067-8816 — doi:10.1074/JBC.C000314200 — PMID:10823817
- ↑ 16,0 16,1 J Zhao beta-arrestin differentially regulates the chemokine receptor CXCR4-mediated signaling and receptor internalization, and this implicates multiple interaction sites between beta-arrestin and CXCR4 // J. Biol. Chem. / L. M. Gierasch — Baltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2000. — ISSN 0021-9258; 1083-351X; 1067-8816 — doi:10.1074/JBC.275.4.2479 — PMID:10644702
- ↑ 17,0 17,1 17,2 17,3 Wang Y., Tang Y., Teng L. et al. Association of beta-arrestin and TRAF6 negatively regulates Toll-like receptor-interleukin 1 receptor signaling // Nat. Immunol. — USA: NPG, 2006. — ISSN 1529-2908; 1529-2916 — doi:10.1038/NI1294 — PMID:16378096
- ↑ 18,0 18,1 Orsini M. J., Parent J. L., Mundell S. J. et al. Trafficking of the HIV coreceptor CXCR4. Role of arrestins and identification of residues in the c-terminal tail that mediate receptor internalization // J. Biol. Chem. / L. M. Gierasch — Baltimore [etc.]: American Society for Biochemistry and Molecular Biology, 1999. — ISSN 0021-9258; 1083-351X; 1067-8816 — doi:10.1074/JBC.274.43.31076 — PMID:10521508
- ↑ 19,0 19,1 Lefkowitz R. J. Desensitization, internalization, and signaling functions of beta-arrestins demonstrated by RNA interference // Proc. Natl. Acad. Sci. U.S.A. / M. R. Berenbaum — [Washington, etc.], USA: National Academy of Sciences [etc.], 2003. — ISSN 0027-8424; 1091-6490 — doi:10.1073/PNAS.262789099 — PMID:12582207
- ↑ Mantovani A., Arenzana-Seisdedos F., Cancellieri C. et al. β-arrestin-dependent activation of the cofilin pathway is required for the scavenging activity of the atypical chemokine receptor D6 // Sci. Signal. — AAAS, 2013. — ISSN 1945-0877; 1937-9145 — doi:10.1126/SCISIGNAL.2003627 — PMID:23633677
- ↑ HUGO Gene Nomenclature Commitee, HGNC:29223 (ингл.). әлеге чыганактан 2015-10-25 архивланды. 18 сентябрь, 2017 тикшерелгән.
- ↑ UniProt, Q9ULJ7 (ингл.). 18 сентябрь, 2017 тикшерелгән.
- Степанов В.М. (2005). Молекулярная биология. Структура и функция белков. Москва: Наука. ISBN 5-211-04971-3.(рус.)
- Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter (2002). Molecular Biology of the Cell (вид. 4th). Garland. ISBN 0815332181.(ингл.)