SMURF1 |
Нинди таксонда бар |
H. sapiens[d][1] |
Кодлаучы ген |
SMURF1[d][1] |
Молекуляр функция |
R-SMAD binding[d][2], I-SMAD binding[d][3][2], activin binding[d][4], связывание с белками плазмы[d][5][6][7][…], phospholipid binding[d][7], трансферазная активность[d][8], ubiquitin-protein transferase activity[d][8][9][6], ubiquitin protein ligase activity[d][10][10][11][…] һәм ubiquitin protein ligase activity[d][8][8][3][…] |
Күзәнәк компоненты |
цитоплазма[10][12][11][…], цитозоль[d][8], мембрана[d][8], күзәнәк мембранасы[d][8][3], нуклеоплазма[d][8], аксон[d][8], soma[d][8], митохондрия[7], экзосома[d][13], цитоплазма[8][5][3][…] һәм экзосома[d][14] |
Биологик процесс |
дифференцировка клеток[d][8][9], engulfment of target by autophagosome[d][7], ectoderm development[d][9], protein polyubiquitination[d][15], BMP signaling pathway[d][8][5], receptor catabolic process[d][3], ubiquitin-dependent SMAD protein catabolic process[d][11][16], negative regulation of ossification[d][8], protein localization to cell surface[d][3], protein targeting to vacuole involved in autophagy[d][7], positive regulation of ubiquitin-dependent protein catabolic process[d][17], protein ubiquitination[d][10][10][16], protein export from nucleus[d][2], positive regulation of dendrite extension[d][18], proteasome-mediated ubiquitin-dependent protein catabolic process[d][16], negative regulation of transforming growth factor beta receptor signaling pathway[d][3][2], transforming growth factor beta receptor signaling pathway[d][8], Wnt signaling pathway, planar cell polarity pathway[d][8], parkin-mediated stimulation of mitophagy in response to mitochondrial depolarization[d][8], substrate localization to autophagosome[d][7], ubiquitin-dependent protein catabolic process[d][10], negative regulation of BMP signaling pathway[d][19][20], protein localization to plasma membrane[d][7], protein polyubiquitination[d][6][21], ubiquitin-dependent protein catabolic process[d][8][9][6][…], protein ubiquitination[d][8][8][2][…], negative regulation of BMP signaling pathway[d][9][22][21], ubiquitin-dependent SMAD protein catabolic process[d][3][2][21], proteasome-mediated ubiquitin-dependent protein catabolic process[d][2][21] һәм positive regulation of protein catabolic process[d][21] |
SMURF1 (ингл. ) — аксымы, шул ук исемдәге ген тарафыннан кодлана торган югары молекуляр органик матдә.[23][24]
- ↑ 1,0 1,1 UniProt
- ↑ 2,0 2,1 2,2 2,3 2,4 2,5 2,6 T Ebisawa, M Fukuchi, G Murakami et al. Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation // J. Biol. Chem. / L. M. Gierasch — Baltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2001. — ISSN 0021-9258; 1083-351X; 1067-8816 — doi:10.1074/JBC.C100008200 — PMID:11278251
- ↑ 3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7 Suzuki C., Murakami G., Fukuchi M. et al. Smurf1 regulates the inhibitory activity of Smad7 by targeting Smad7 to the plasma membrane // J. Biol. Chem. / L. M. Gierasch — Baltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2002. — ISSN 0021-9258; 1083-351X; 1067-8816 — doi:10.1074/JBC.M201901200 — PMID:12151385
- ↑ T Yamaguchi, A Kurisaki, N Yamakawa et al. FKBP12 functions as an adaptor of the Smad7-Smurf1 complex on activin type I receptor // J. Mol. Endocrinol. — Bioscientifica, 2006. — ISSN 0952-5041; 1479-6813 — doi:10.1677/JME.1.01966 — PMID:16720724
- ↑ 5,0 5,1 5,2 Meng A., Zhang L. SCFFBXL¹⁵ regulates BMP signalling by directing the degradation of HECT-type ubiquitin ligase Smurf1, SCFFBXL15regulates BMP signalling by directing the degradation of HECT-type ubiquitin ligase Smurf1 // EMBO J. — NPG, 2011. — ISSN 0261-4189; 1460-2075 — doi:10.1038/EMBOJ.2011.155 — PMID:21572392
- ↑ 6,0 6,1 6,2 6,3 Li S., Lu K., Wang J. et al. Ubiquitin ligase Smurf1 targets TRAF family proteins for ubiquitination and degradation // Mol. Cell. Biochem. — Springer Science+Business Media, 2010. — ISSN 0300-8177; 1573-4919; 0013-9424 — doi:10.1007/S11010-009-0315-Y — PMID:19937093
- ↑ 7,0 7,1 7,2 7,3 7,4 7,5 7,6 Levine B., Zhang Y. E., Forst C. V. et al. Image-based genome-wide siRNA screen identifies selective autophagy factors // Nature / M. Skipper — NPG, Springer Science+Business Media, 2011. — ISSN 1476-4687; 0028-0836 — doi:10.1038/NATURE10546 — PMID:22020285
- ↑ 8,00 8,01 8,02 8,03 8,04 8,05 8,06 8,07 8,08 8,09 8,10 8,11 8,12 8,13 8,14 8,15 8,16 8,17 8,18 8,19 GOA
- ↑ 9,0 9,1 9,2 9,3 9,4 H Zhu, P Kavsak, S Abdollah et al. A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation // Nature / M. Skipper — NPG, Springer Science+Business Media, 1999. — ISSN 1476-4687; 0028-0836 — doi:10.1038/23293 — PMID:10458166
- ↑ 10,0 10,1 10,2 10,3 10,4 10,5 GOA
- ↑ 11,0 11,1 11,2 Suzuki C., Murakami G., Fukuchi M. et al. Smurf1 regulates the inhibitory activity of Smad7 by targeting Smad7 to the plasma membrane // J. Biol. Chem. / L. M. Gierasch — Baltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2002. — ISSN 0021-9258; 1083-351X; 1067-8816 — doi:10.1074/JBC.M201901200 — PMID:12151385
- ↑ Meng A., Zhang L. SCFFBXL¹⁵ regulates BMP signalling by directing the degradation of HECT-type ubiquitin ligase Smurf1, SCFFBXL15regulates BMP signalling by directing the degradation of HECT-type ubiquitin ligase Smurf1 // EMBO J. — NPG, 2011. — ISSN 0261-4189; 1460-2075 — doi:10.1038/EMBOJ.2011.155 — PMID:21572392
- ↑ Pisitkun T., Tchapyjnikov D., Knepper M. A. Large-scale proteomics and phosphoproteomics of urinary exosomes // Journal of the American Society of Nephrology / J. Briggs — American Society of Nephrology, 2008. — ISSN 1046-6673; 1533-3450 — doi:10.1681/ASN.2008040406 — PMID:19056867
- ↑ Pisitkun T., Tchapyjnikov D., Knepper M. A. Large-scale proteomics and phosphoproteomics of urinary exosomes // Journal of the American Society of Nephrology / J. Briggs — American Society of Nephrology, 2008. — ISSN 1046-6673; 1533-3450 — doi:10.1681/ASN.2008040406 — PMID:19056867
- ↑ Li S., Lu K., Wang J. et al. Ubiquitin ligase Smurf1 targets TRAF family proteins for ubiquitination and degradation // Mol. Cell. Biochem. — Springer Science+Business Media, 2010. — ISSN 0300-8177; 1573-4919; 0013-9424 — doi:10.1007/S11010-009-0315-Y — PMID:19937093
- ↑ 16,0 16,1 16,2 T Ebisawa, M Fukuchi, G Murakami et al. Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation // J. Biol. Chem. / L. M. Gierasch — Baltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2001. — ISSN 0021-9258; 1083-351X; 1067-8816 — doi:10.1074/JBC.C100008200 — PMID:11278251
- ↑ Guo X., Shen S., Song S. et al. The E3 ligase Smurf1 regulates Wolfram syndrome protein stability at the endoplasmic reticulum, The E3 Ligase Smurf1 Regulates Wolfram Syndrome Protein Stability at the Endoplasmic Reticulum // J. Biol. Chem. / L. M. Gierasch — Baltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2011. — ISSN 0021-9258; 1083-351X; 1067-8816 — doi:10.1074/JBC.M111.225615 — PMID:21454619
- ↑ Yoo J. C., Lim T. y., Park J. S. et al. SYT14L, especially its C2 domain, is involved in regulating melanocyte differentiation // Journal of Dermatological Science — Elsevier BV, 2013. — ISSN 0923-1811; 1873-569X — doi:10.1016/J.JDERMSCI.2013.07.010 — PMID:23999003
- ↑ H Zhu, P Kavsak, S Abdollah et al. A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation // Nature / M. Skipper — NPG, Springer Science+Business Media, 1999. — ISSN 1476-4687; 0028-0836 — doi:10.1038/23293 — PMID:10458166
- ↑ Rothman A., Morrell N. W., Lawrie A. et al. MicroRNA-140-5p and SMURF1 regulate pulmonary arterial hypertension // J. Clin. Invest. / R. S. Ahima — American Society for Clinical Investigation, 2016. — ISSN 0021-9738; 1558-8238 — doi:10.1172/JCI83361 — PMID:27214554
- ↑ 21,0 21,1 21,2 21,3 21,4 Livstone M. S., Thomas P. D., Lewis S. E. et al. Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium // Brief. Bioinform. — OUP, 2011. — ISSN 1467-5463; 1477-4054 — doi:10.1093/BIB/BBR042 — PMID:21873635
- ↑ Rothman A., Morrell N. W., Lawrie A. et al. MicroRNA-140-5p and SMURF1 regulate pulmonary arterial hypertension // J. Clin. Invest. / R. S. Ahima — American Society for Clinical Investigation, 2016. — ISSN 0021-9738; 1558-8238 — doi:10.1172/JCI83361 — PMID:27214554
- ↑ HUGO Gene Nomenclature Commitee, HGNC:29223 (ингл.). әлеге чыганактан 2015-10-25 архивланды. 18 сентябрь, 2017 тикшерелгән.
- ↑ UniProt, Q9ULJ7 (ингл.). 18 сентябрь, 2017 тикшерелгән.
- Степанов В.М. (2005). Молекулярная биология. Структура и функция белков. Москва: Наука. ISBN 5-211-04971-3.(рус.)
- Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter (2002). Molecular Biology of the Cell (вид. 4th). Garland. ISBN 0815332181.(ингл.)