5-ортоплекс | |
---|---|
5-ортоплекс (перспективна проєкція (на 2-вимірний простір) стереографічної проєкції (на 3-вимірний простір) 4-вимірної діаграми Шлегеля) | |
Тип | Правильний п'ятивимірний політоп |
Символ Шлефлі | {3,3,3,4} |
4-вимірних комірок | 32 |
Комірка | 80 |
Граней | 80 |
Ребер | 40 |
Вершин | 10 |
Вершинна фігура | Шістнадцятикомірник |
Двоїстий політоп | 5-гіперкуб |
5-ортоплекс, або пентакрос, або тріаконтадітерон, або тріаконтидітерон — пятивимірне геометричне тіло, правильний політоп, що має 10 вершин, 40 ребер, 80 граней — правильних трикутників, 80 правильнотетраедричних 3-гіперграней, 32 п'ятикомірникових 4-гіперграней. 5-ортоплекс — це один з нескінченної кількості гіпероктаедрів — політопів, двоїстих гіперкубам. 5-ортоплекс є п'ятивимірною 16-комірниковою гіпербіпірамідою.
Ця матриця конфігурації подає 5-ортоплекс. Рядки та стовпці відповідають вершинам, ребрам, граням, коміркам та 4-граням. Діагональні числа показують, скільки кожного елемента зустрічається в цілому 5-ортоплексі. Недіагональні числа показують, скільки елементів стовпця зустрічається в елементі рядка або на ньому.[1][2]
В декартовій системі координат вершини 5-ортоплекса з центром у початку координат мають такі координати: (±1,0,0,0,0), (0,±1,0,0,0), (0,0,±1,0,0), (0,0,0,±1,0), (0,0,0,0,±1).
Кожні дві вершини 5-ортоплекса (крім протилежних) з'єднані ребром.