Наближення формочки для випікання мафінів — форма потенціалу, що широко використовується в квантовомеханічних розрахунках електронної структури твердих тіл. Його запропонував у 1930-х Джон Слейтер. В цьому наближення потенціал вважається сферично симетричним навколо атомних остовів і сталим у міжвузловому прострі. Хвильові функції знаходяться зшивкою розв'язків рівняння Шредінгера на границі кожної зі сфер. Лінійна комбінація цих розв'язків дає загальний розв'язок, який знаходять варіаційно[1][2]. Це наближення використовують багато сучасних методів розрахунку зонної структури[3][4] Серед них метод доповнених плоских хвиль (APW), метод лінійних орбіталей формочки для мафінів (LMTO) та різні методи з використанням функцій Гріна[5]. Одне з застосувань — мтод розроблений Коррінгою(1947), Коном та Ростокером (1954), який називають the методом ККР[6][7][8]. Цей метод було пристосовано для розрахунків невпрорядкованих матеріалв, в яких його називають наближенням когерентного потенціалу ККР[9].
У найпростішій формі кожен атом апроксимується сферою, усередині якої електрон відчуває екранований потенціал. У проміжку між цими сферами потенціал вважається сталим. Неперервність потенціалу на границі між областями нав'язується.
В міжвузловому просторі зі сталим потенціалом хвильові функції електронів записуються як суперпозиція проских хвиль. В області остовів хвильва функція може бути записана як комбінація сферичних гармонік та радіальних функцій, що є власними функціями рівняння Шредінгера[2][10]. Таке використання базису, відмінного від плоских хвиль називають підходом збагачених плоских хвиль. Існує багато різновидів цього підходу. Він дозволяє ефектривно відтворити хвильову функцію з околі атомного основу, там, де вона може швидко мінятися, а тому плоскі хвилі були б поганим вибором з огляду на збіжність в ситуації, коли не використовуються псевдопотенціали.