Тензор Схаутена в рімановій геометрії існує для розмірностей > 3 і визначається як
де — тензор Річчі, — скалярна кривина, — метричний тензор ф — розмірність многовиду.
Названий за іменем Яна Схаутена.
- Arthur L. Besse, Einstein Manifolds. Springer-Verlag, 2007. See Ch.1 §J "Conformal Changes of Riemannian Metrics."
- Spyros Alexakis, The Decomposition of Global Conformal Invariants. Princeton University Press, 2012. Ch.2, noting in a footnote that the Schouten tensor is a "trace-adjusted Ricci tensor" and may be considered as "essentially the Ricci tensor."
- Wolfgang Kuhnel and Hans-Bert Rademacher, "Conformal diffeomorphisms preserving the Ricci tensor", Proc. Amer. Math. Soc. 123 (1995), no. 9, 2841–2848. Online eprint (pdf).
- T. Bailey, M.G. Eastwood and A.R. Gover, "Thomas's Structure Bundle for Conformal, Projective and Related Structures", Rocky Mountain Journal of Mathematics, vol. 24, Number 4, 1191-1217.