Теорема про інваріантність областей стверджує, що образ відкритої підмножини евклідового простору при неперервному ін'єктивному відображенні у цей же евклідів простір є відкритою множиною. Теорема була доведена Лейтзеном Брауером. [1]
Для доведення теореми достатньо довести, що для будь-якої відкритої множини образ є відкритою підмножиною у . Більш того достатньо довести твердження для елементів деякої бази топології, наприклад відкритих куль виду радіуса із центром , що із своїм замиканням належать U.
є компактною множиною і є ін'єктивним неперервним відображенням із компактного простору у простір , що є гаусдорфовим. Як неперервне відображення із компактного простору в гаусдорфовий є замкнутим відображенням (замкнута підмножина компактного простору є компактною, її образ при неперервному відображенні теж буде компактною підмножиною, а компактна підмножина гаусдорфового простору є замкнутою; тобто образ замкнутої множини при таких умовах теж э замкнутою множиною). Оскільки є ін'єктивним, то він також є гомеоморфізмом. Тому образ є гомеоморфним сфері і згідно з теоремою Брауера — Жорданадоповнення є об'єднанням двох компонент зв'язності перша з яких є обмежена, а друга — необмежена.
Множина (де є замиканням) є компактною, як образ компактної множини при неперервному відображенні. Тому є обмеженою множиною і є необмеженою, зв'язаною областю. Звідси або еквівалентно
Множина є зв'язаною, тому і є зв'язаною і тому міститься в одній із компонент зв'язності . Оскільки то цією компонентою є і тоді також і остаточно Тобто образом довільної відкритої множини із вказаної бази є відкрита множина і відображення є відкритим.
З теореми випливає, що Евклідові простори різної розмірності не є гомеоморфними.
За допомогою теореми можна довести багато тверджень про існування опуклих многогранників, зокрема існування опуклого многогранника з даною розгорткою [2]
↑Brouwer L.E.J. Beweis der Invarianz des n-dimensionalen Gebiets, Mathematische Annalen 71 (1912), ст. 305–315; див. також 72 (1912), ст. 55–56
↑А. Д. Александров. Элементарное доказательство теоремы Минковского и некоторых других теорем о выпуклых многогранниках // Изв. АН СССР. Сер. Матем.. — 1937. — Т. 1, № 4. — С. 597—608.
↑Leray J. Topologie des espaces abstraits de M. Banach.