Теорема Фенхеля про поворот кривої

Теорема Фенхеля стверджує, що варіація повороту будь-якої замкнутої кривої не менша від і рівність досягається лише в разі опуклої плоскої кривої. Зокрема, середня кривина замкнутої кривої довжини не може бути меншою від .

Теорему довів Вернер Фенхель[en] 1929 року.[1]

Про доведення

[ред. | ред. код]

Зазвичай доведення будують на твердженні, що сферична крива довжини менше ніж лежить у відкритій півсфері. Це твердження можна довести, наприклад, застосувавши формулу Крофтона, але відомі й елементарніші доведення.

Залишається зауважити, що крива, утворена одиничними дотичними векторами (дотична індикатриса) до початкової кривої, не може лежати у відкритій півсфері. Отже її довжина не менша від , довжина ж цієї кривої збігається з інтегралом кривини.

Варіації та узагальнення

[ред. | ред. код]
  • Лема Решетняка про хорду. Якщо регулярна гладка підходить до своєї хорди під кутами і , то поворот кривий принаймні .
    • Це твердження легко випливає з теореми Фенхеля, але найчастіше його зручніше використовувати. Наприклад, сама теорема Фенхеля випливає, якщо застосувати лему до розбиття замкнутої кривої на дві дуги.

Див. також

[ред. | ред. код]

Примітки

[ред. | ред. код]
  1. W. Fenchel (1929) Über Krümmung und Windung geschlossener Raumkurven[недоступне посилання з Февраль 2020], Mathematische Annalen 101: 238—252.

Література

[ред. | ред. код]