Leonardo raqami

Leonardo raqamlari takrorlanish orqali berilgan raqamlar ketma-ketligi hisoblanadi:

Edsger W. Dijkstra[1] ularni silliq tartiblash algoritmining ajralmas qismi sifatida ishlatgan va shuningdek, ularni batafsil tahlil qilganlar[2][3].

Leonardo tubi Leonardo soni boʻlib, u ham tub son hisoblanadi.

Birinchi bir nechta Leonardo raqamlari quyidagilar:

1, 1, 3, 5, 9, 15, 25, 41, 67, 109, 177, 287, 465, 753, 1219, 1973, 3193, 5167,…

Leonardoning birinchi bir necha asosiy sonlari:

3, 5, 41, 67, 109, 1973, 5167, 2692537, 11405773, 126491971, 331160281, 535828591, 279167724889, 145446920496281, 28944668049352441, 5760134388741632239, 63880869269980199809, 167242286979696845953, 597222253637954133837103, …

Modul sikllari

[tahrir | manbasini tahrirlash]

Leonardo raqamlari har qanday modulda n≥2 sikl hosil qiladi. Uni koʻrishning oson yoʻli quyidagilar:

  • Agar juftlik moduli n ketma-ketlikda ikki marta paydo boʻlsa, unda sikl mavjud.
  • Agar oldingi bayonotdan foydalanib, asosiy bayonotni notoʻgʻri deb hisoblasak, bu 0 va n-1 oʻrtasida cheksiz aniq juft raqamlar mavjudligini bildiradi, chunki bu notoʻgʻri, chunki n2 juftlik mavjud boʻladi.

n≤8 uchun sikllar:

Modul Davr Uzunlik
2 1 1
3 1,1,0,2,0,0,1,2 8
4 1,1,3 3
5 1,1,3,0,4,0,0,1,2,4,2,2,0,3,4,3,3,2,1,4 20
6 1,1,3,5,3,3,1,5 8
7 1,1,3,5,2,1,4,6,4,4,2,0,3,4,1,6 16
8 1,1,3,5,1,7 6

Davr har doim (1,n-1) juftlikda tugaydi, chunki bu juftlikdan (1,1) oldin kelishi mumkin boʻlgan yagona juftlik boʻladi.

  • Quyidagi tenglama qoʻllanadi:
 Isbot

Fibonachchi raqamlariga munosabat

[tahrir | manbasini tahrirlash]

Leonardo raqamlari Fibonachchi raqamlari bilan quyidagi munosabatlarga bogʻliq .

Bu munosabatdan Leonardo raqamlari uchun Binetning Fibonachchi raqamlari formulasiga oʻxshash yopiq shakldagi ifodani olish juda oson:

bu yerda oltin nisbat va kvadrat polinomning ildizlari shunga teng .

  1. „E.W.Dijkstra Archive: Fibonacci numbers and Leonardo numbers. (EWD 797)“. www.cs.utexas.edu. Qaraldi: 2020-yil 11-avgust.
  2. „E.W.Dijkstra Archive: Smoothsort, an alternative for sorting in situ (EWD 796a)“. www.cs.utexas.edu. Qaraldi: 2020-yil 11-avgust.
  3. „Leonardo Number - GeeksforGeeks“. www.geeksforgeeks.org. Qaraldi: 2022-yil 8-oktyabr.
  • OEIS sequence A001595

Andoza:Classes of natural numbers