在幾何學中,異扭稜正方形鑲嵌是歐幾里德平面上正方形鑲嵌的一種變形,是種平面鑲嵌,屬於半正鑲嵌圖的一種,它的每個頂點上皆有三個正三角形和兩個正方形。在施萊夫利符號中用{3,6}:e來表示。
康威稱扭稜正方形鑲嵌為isosnub quadrille[1],因為異扭稜正方形鑲嵌看起來像正方形鑲嵌經過扭稜變換的結果,但實際上與扭稜正方形鑲嵌不同,因此稱為異扭稜正方形鑲嵌。
- ^ John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 存档副本. [2012-01-20]. (原始内容存档于2010-09-19). (Chapter 21, Naming Archimedean and Catalan polyhedra and tilings, p288 table)
- Grünbaum, Branko ; and Shephard, G. C. Tilings and Patterns. New York: W. H. Freeman. 1987. ISBN 0-7167-1193-1. (Chapter 2.1: Regular and uniform tilings, p.58-65)
- Williams, Robert. The Geometrical Foundation of Natural Structure: A Source Book of Design. Dover Publications, Inc. 1979. ISBN 0-486-23729-X. p37
- 埃里克·韦斯坦因. Uniform tessellation. MathWorld.
- 埃里克·韦斯坦因. Semiregular tessellation. MathWorld.
- Klitzing, Richard. 2D Euclidean tilings elong( x3o6o ) - etrat - O4. bendwavy.org.
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 [1]
- Grünbaum, Branko ; and Shephard, G. C. Tilings and Patterns. New York: W. H. Freeman. 1987. ISBN 0-7167-1193-1. (Chapter 2.1: Regular and uniform tilings, p.58-65)
- Williams, Robert. The Geometrical Foundation of Natural Structure: A Source Book of Design. Dover Publications, Inc. 1979. ISBN 0-486-23729-X. p38