偏最小二乘回归(英語:Partial least squares regression, PLS回归)是一种统计学方法,与主成分回归有关系,但不是寻找响应和独立变量之间最小方差的超平面,而是通过投影预测变量和观测变量到一个新空间来寻找一个线性回归模型。因为数据X和Y都会投影到新空间,PLS系列的方法都被称为双线性因子模型。當Y是分类數據時有「偏最小二乘判别分析(英語:Partial least squares Discriminant Analysis, PLS-DA)」,是PLS的一个变形。
1 function PLS1()
2
3 , an initial estimate of .
4
5 for = 0 to
6 (note this is a scalar)
7
8
9 (note this is a scalar)
10 if = 0
11 , break the for loop
12 if
13
14
15
16 end for
17 define to be the matrix with columns .
Do the same to form the matrix and vector.
18
19
20 return
Haenlein, Michael; Kaplan, Andreas M. A Beginner's Guide to Partial Least Squares Analysis. Understanding Statistics. 2004, 3 (4): 283–297. doi:10.1207/s15328031us0304_4.
Henseler, Joerg; Fassott, Georg. Testing Moderating Effects in PLS Path Models. An Illustration of Available Procedures. 2005.
Lingjærde, Ole-Christian; Christophersen, Nils. Shrinkage Structure of Partial Least Squares. Scandinavian Journal of Statistics. 2000, 27 (3): 459–473. doi:10.1111/1467-9469.00201.
Tenenhaus, Michel. La Régression PLS: Théorie et Pratique. Paris: Technip.. 1998.
Rosipal, Roman; Kramer, Nicole. Overview and Recent Advances in Partial Least Squares, in Subspace, Latent Structure and Feature Selection Techniques: 34–51. 2006.
Helland, Inge S. PLS regression and statistical models. Scandinavian Journal of Statistics. 1990, 17 (2): 97–114. JSTOR 4616159.
Wold, Herman. Estimation of principal components and related models by iterative least squares. Krishnaiaah, P.R. (编). Multivariate Analysis. New York: Academic Press. 1966: 391–420.
Wold, Herman. The fix-point approach to interdependent systems. Amsterdam: North Holland. 1981.
Wold, Herman. Partial least squares. Kotz, Samuel; Johnson, Norman L. (编). Encyclopedia of statistical sciences 6. New York: Wiley. 1985: 581–591.
Wold, Svante; Ruhe, Axel; Wold, Herman; Dunn, W.J. The collinearity problem in linear regression. the partial least squares (PLS) approach to generalized inverses. SIAM Journal on Scientific and Statistical Computing. 1984, 5 (3): 735–743. doi:10.1137/0905052.
Wan Mohamad Asyraf Bin Wan Afthanorhan. (2013). A Comparison Of Partial Least Square Structural Equation Modeling (PLS-SEM) and Covariance Based Structural EquationModeling (CB-SEM) for Confirmatory Factor Analysis International Journal of Engineering Science and Innovative Technology (IJESIT), 2(5), 9.
^de Jong, S. SIMPLS: an alternative approach to partial least squares regression. Chemometrics and Intelligent Laboratory Systems. 1993, 18 (3): 251–263. doi:10.1016/0169-7439(93)85002-X.
^Abdi, H. Partial least squares regression and projection on latent structure regression (PLS-Regression). Wiley Interdisciplinary Reviews: Computational Statistics. 2010, 2: 97–106. doi:10.1002/wics.51.
^Trygg, J; Wold, S. Orthogonal Projections to Latent Structures. Journal of Chemometrics. 2002, 16 (3): 119–128. doi:10.1002/cem.695.
^Sæbøa, S.; Almøya, T.; Flatbergb, A.; Aastveita, A.H.; Martens, H. LPLS-regression: a method for prediction and classification under the influence of background information on predictor variables. Chemometrics and Intelligent Laboratory Systems. 2008, 91 (2): 121–132. doi:10.1016/j.chemolab.2007.10.006.