在几何学里,截半正一百二十胞体是一个由600个正四面体和120个截半二十面体胞构成的均匀多胞体。其顶点图是一个三角柱,每个顶点周围有3个截半二十面体和2个正四面体。
三维正射投影
|
|
截半正一百二十胞体的三维正射投影,对着一个截半二十面体胞。
|
考克斯特平面正射投影
H4
|
-
|
F4
|
[30]
|
[20]
|
[12]
|
H3
|
A2 / B3 / D4
|
A3 / B2
|
[10]
|
[6]
|
[4]
|
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1] (页面存档备份,存于互联网档案馆)
- (Paper 22) H.S.M. Coxeter, Regular and Semi-Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- J.H. Conway and M.J.T. Guy: Four-Dimensional Archimedean Polytopes, Proceedings of the Colloquium on Convexity at Copenhagen, page 38 und 39, 1965
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
- Four-dimensional Archimedian Polytopes (页面存档备份,存于互联网档案馆) (German), Marco Möller, 2004 PhD dissertation [2] (页面存档备份,存于互联网档案馆)