笛卡爾數 (Descartes number)指的是假若將其中一個合成數 因數 當成質數 處理,就會變成完全數 的奇數。這類數字以勒内·笛卡爾 為名,而這是因為笛卡爾注意到說假若把22021 當成質數處理的話,那麼D = 32 ⋅72 ⋅112 ⋅132 ⋅22021 = (3⋅1001)2 ⋅ (22⋅1001 − 1) = 198585576189 就會滿足完全數的條件之故,而這是因為假若把22021 當成質數處理的話,其正因數的和 就會滿足下式:
σ
(
D
)
=
(
3
2
+
3
+
1
)
⋅
(
7
2
+
7
+
1
)
⋅
(
11
2
+
11
+
1
)
⋅
(
13
2
+
13
+
1
)
⋅
(
22021
+
1
)
=
(
13
)
⋅
(
3
⋅
19
)
⋅
(
7
⋅
19
)
⋅
(
3
⋅
61
)
⋅
(
22
⋅
1001
)
=
3
2
⋅
7
⋅
13
⋅
19
2
⋅
61
⋅
(
22
⋅
7
⋅
11
⋅
13
)
=
2
⋅
(
3
2
⋅
7
2
⋅
11
2
⋅
13
2
)
⋅
(
19
2
⋅
61
)
=
2
⋅
(
3
2
⋅
7
2
⋅
11
2
⋅
13
2
)
⋅
22021
=
2
D
,
{\displaystyle {\begin{aligned}\sigma (D)&=(3^{2}+3+1)\cdot (7^{2}+7+1)\cdot (11^{2}+11+1)\cdot (13^{2}+13+1)\cdot (22021+1)=(13)\cdot (3\cdot 19)\cdot (7\cdot 19)\cdot (3\cdot 61)\cdot (22\cdot 1001)\\&=3^{2}\cdot 7\cdot 13\cdot 19^{2}\cdot 61\cdot (22\cdot 7\cdot 11\cdot 13)=2\cdot (3^{2}\cdot 7^{2}\cdot 11^{2}\cdot 13^{2})\cdot (19^{2}\cdot 61)=2\cdot (3^{2}\cdot 7^{2}\cdot 11^{2}\cdot 13^{2})\cdot 22021=2D,\end{aligned}}}
當然在事實上,22021是一個合成數(22021 = 192 ⋅ 61 ),因此198585576189並不是完全數,而198585576189是笛卡爾數的一個例子。
笛卡爾數可定義為滿足n = m ⋅ p 的奇數n ,在其中 m 與 p 互質 且2n = σ(m ) ⋅ (p + 1) ,而此處的p 是一個被當成質數處理但實質上是合成數的「假質數」(spoof prime)。上面給出的例子是截至目前為止唯一已知的笛卡爾數的例子。
若m 是一個殆完全數 ,[ 註 1] ,也就是說若σ(m ) = 2m − 1 且 2m − 1 是一個「假質數」,那麼n = m ⋅ (2m − 1) 就會是一個笛卡爾數,而這是因為σ(n ) = σ(m ⋅ (2m − 1)) = σ(m ) ⋅ 2m = (2m − 1) ⋅ 2m = 2n 之故;而若2m − 1 是一個質數的話,那n 就會是一個奇完全數。
班柯斯(Banks)等人在2008年證明說,若n 是一個無立方因子數,且n 不能為
3
{\displaystyle 3}
所除盡,那麼n 就會有超過一百萬個彼此相異的質因數。
約翰·渥伊多(John Voight)提出一個容許負整數的推廣版笛卡爾數,他發現說在考慮負整數的狀況下,
3
4
7
2
11
2
19
2
(
−
127
)
1
{\displaystyle 3^{4}7^{2}11^{2}19^{2}(-127)^{1}}
這數字會符合笛卡爾數的定義。[ 1] 之後一群來自楊百翰大學 的學者發現了更多類似的例子,[ 1] 並加入了另一類的「假質數」,而這另一類的「假質數」允許在質因數分解時其中一個質數與另一個質數相同。[ 2]
^ 1.0 1.1 Nadis, Steve. Mathematicians Open a New Front on an Ancient Number Problem . Quanta Magazine. September 10, 2020 [3 October 2021] . (原始内容存档 于2023-04-27).
^ Andersen, Nickolas; Durham, Spencer ; Griffin, Michael J. ; Hales, Jonathan ; Jenkins, Paul ; Keck, Ryan ; Ko, Hankun ; Molnar, Grant; Moss, Eric ; Nielsen, Pace P. ; Niendorf, Kyle ; Tombs, Vandy; Warnick, Merrill ; Wu, Dongsheng. Odd, spoof perfect factorizations. J. Number Theory. 2020, (234): 31-47. arXiv:2006.10697 . arXiv version (页面存档备份 ,存于互联网档案馆 )
Banks, William D.; Güloğlu, Ahmet M.; Nevans, C. Wesley; Saidak, Filip. Descartes numbers. De Koninck, Jean-Marie ; Granville, Andrew ; Luca, Florian (编). Anatomy of integers. Based on the CRM workshop, Montreal, Canada, March 13--17, 2006. CRM Proceedings and Lecture Notes 46 . Providence, RI: American Mathematical Society . 2008: 167–173. ISBN 978-0-8218-4406-9 . Zbl 1186.11004 .
Klee, Victor ; Wagon, Stan . Old and new unsolved problems in plane geometry and number theory . The Dolciani Mathematical Expositions 11 . Washington, DC: Mathematical Association of America . 1991. ISBN 0-88385-315-9 . Zbl 0784.51002 .