公理I。外延性公理(Axiom der Bestimmtheit):“如果一个集合M的所有元素也是N的元素,且反之亦然...则M = N。简要的说,所有集合由它所包含的元素确定”。
公理II。基本集合公理(Axiom der Elementarmengen):“存在这样的一个集合,即空集,它根本不包含元素。如果a是域的任何元素,存在一个集合{a}包含a并只包含a作为元素。如果a和b是域的任何两个元素,总是存在一个集合{a, b}包含a和b作为元素,而不包含不同于它们二者的对象x”。参见空集公理、对集公理。
公理III。分离公理(Axiom der Aussonderung):“只要命题函数–(x)对于一个集合M的所有元素是明确的,则存在M一个子集M' ,它精确地包含M中使–(x)为真的那些元素作为元素”。
公理IV。幂集公理(Axiom der Potenzmenge):“对于所有集合T都对应着一个集合T' ,T的幂集,精确的包含T的所有子集作为元素”。
公理V。并集公理(Axiom der Vereinigung):“对于所有集合T都对应着一个集合∪T,T的并集,精确的包含T的元素们的所有元素作为元素”。
公理VI。选择公理(Axiom der Auswahl):“如果T是其元素都是不同于并且相互无交的集合们的集合,它的并集∪T包含至少一个子集S1有一个且只有一个元素公共于T的每个元素”。
公理VII。无穷公理(Axiom des Unendlichen):“在域中存在至少一个集合Z包含空集作为一个元素,并且对于它的每个元素a都对应着形如{a}的进一步元素而构成的,换句话说,对于它的每个元素a它也包含对应的集合{a}作为元素”。
Zermelo, Ernst. "Untersuchungen über die Grundlagen der Mengenlehre I". Mathematische Annalen, 65: 261-281, 1908. English translation, "Investigations in the foundations of set theory" in Heijenoort 1967, pages 199-215.