Các cặp giải bài toán Brocard được đặt tên cặp số Brown bởi Clifford A. Pickover trong quyển sách năm 1995 của ông: Chìa khóa tới vô cực, sau khi biết được bài toán từ Kevin S. Brown.[4] Hiện vào tháng 5 năm 2021, chỉ có 3 cặp số Brown được biết:
(4,5), (5,11), và (7,71)
dựa trên các đẳng thức sau:
4! + 1 = 52 = 25,
5! + 1 = 112 = 121
7! + 1 = 712 = 5041
Paul Erdős phỏng đoán rằng không nghiệm nguyên nào khác tồn tại. Tìm kiếm bằng máy tính lên tới 1015 cũng không thấy nghiệm nào khác tồn tại.[5][6][7]
^Brocard, H. (1876), "Question 166", Nouv. Corres. Math., 2: 287
^Brocard, H. (1885), "Question 1532", Nouv. Ann. Math., 4: 391
^Ramanujan, Srinivasa (2000), "Question 469", trong Hardy, G. H.; Aiyar, P. V. Seshu; Wilson, B. M. (biên tập), Collected papers of Srinivasa Ramanujan, Providence, Rhode Island: AMS Chelsea Publishing, tr. 327, ISBN0-8218-2076-1, MR2280843
^Overholt, Marius (1993), "The Diophantine equation n! + 1 = m2", The Bulletin of the London Mathematical Society, 25 (2): 104, doi:10.1112/blms/25.2.104, MR1204060
^Dąbrowski, Andrzej (1996), "On the Diophantine equation x! + A = y2", Nieuw Archief voor Wiskunde, 14 (3): 321–324, MR1430045
Renner thì đã quá nổi tiếng với sự vô nhân tính cùng khả năng diễn xuất tuyệt đỉnh và là kẻ đã trực tiếp tuồng thông tin cũng như giúp Demiurge và Albedo