Bậc (lý thuyết đồ thị)

Bài này viết về thuật ngữ "bậc" dùng trong lý thuyết đồ thị. Mời xem các bài bậc (toán học) hoặc bậc để đọc về các nghĩa khác.

Trong Lý thuyết đồ thị, bậc của một đỉnh v là số cạnh liên thuộc với v (trong đó, khuyên được tính hai lần). Bậc của v được ký hiệu là .

Trong một đồ thị có hướng, bậc trong của đỉnh v là số cung kết thúc tại v, còn bậc ngoài là số cung xuất phát từ v. Bậc trong và bậc ngoài của v được ký hiệu là . Do đó, .

Đỉnh với được gọi là đỉnh cô lập. Đỉnh có được gọi là . Nếu mỗi đỉnh của đồ thị đều có bậc bằng nhau và bằng k thì đồ thị được gọi là đồ thị chính quy bậc k và đồ thị được coi là có bậc bằng k.

Đỉnh có được gọi là đỉnh phát, đỉnh có đỉnh thu.

Một số định lý

[sửa | sửa mã nguồn]

Cho đồ thị G=(V,E),

Do mỗi cạnh liên thuộc với hai đỉnh nên số đỉnh bậc lẻ trong đồ thị là số chẵn.

Tham khảo

[sửa | sửa mã nguồn]
Chúng tôi bán
Bài viết liên quan
Một số Extensions dành cho các dân chơi Visual Code
Một số Extensions dành cho các dân chơi Visual Code
Trước khi bắt tay vào cốt thì bạn cũng nên tự trang trí vì dù sao bạn cũng sẽ cần dùng lâu dài hoặc đơn giản muốn thử cảm giác mới lạ
Taxi Driver: Muôn kiểu biến hình của anh chàng tài xế vạn người mê Kim Do Ki
Taxi Driver: Muôn kiểu biến hình của anh chàng tài xế vạn người mê Kim Do Ki
Trong các bộ phim mình từng xem thì Taxi Driver (Ẩn Danh) là 1 bộ có chủ đề mới lạ khác biệt. Dựa trên 1 webtoon nổi tiếng cùng tên
Tổng quan nguồn gốc và thế giới Goblin Slayer
Tổng quan nguồn gốc và thế giới Goblin Slayer
Khi Truth và Illusion tạo ra Goblin Slayer, số skill points của GS bình thường, không trội cũng không kém, chỉ số Vitality (sức khỏe) tốt, không bệnh tật, không di chứng, hay có vấn đề về sức khỏe
Phân loại kĩ năng trong Tensura - Tensei shitara Slime Datta Ken
Phân loại kĩ năng trong Tensura - Tensei shitara Slime Datta Ken
Trên đời này không có gì là tuyệt đối cả, nhất là với mấy cái kĩ năng có chữ "tuyệt đối" trong tên, càng tin vào "tuyệt đối", càng dễ hẹo