Dị thường không khí tự do

Trong địa vật lý, dị thường trọng lực không khí tự do, thường được gọi đơn giản là dị thường không khí tự do, là dị thường trọng lực đo được sau khi hiệu chỉnh không khí tự do được áp dụng để điều chỉnh độ cao mà phép đo được thực hiện. Việc hiệu chỉnh không khí tự do thực hiện bằng cách điều chỉnh các phép đo trọng lực này với những gì đã được đo ở mức tham chiếu. Đối với Trái đất, mức tham chiếu này thường được lấy là mực nước biển trung bình.[1][2]

Dị thường

[sửa | sửa mã nguồn]

Các dị thường trọng lực không khí tự do được đưa ra bằng phương trình:[1]

Ở đây, là dị thường trọng lực không khí tự do, là trọng lực được quan sát, là sự điều chỉnh cho vĩ độ (vì các hành tinh không phải là hình cầu hoàn hảo), và là hiệu chỉnh không khí tự do

Gia tốc trọng trường giảm khi định luật nghịch đảo bình phương với khoảng cách mà phép đo được thực hiện từ khối lượng. Hiệu chỉnh không khí tự do được tính theo Định luật Newton, như một tỷ lệ thay đổi trọng lực theo khoảng cách:[3]

Tại vĩ độ 45°, mGal/m.[4]

Hiệu chỉnh không khí tự do là lượng phải được thêm vào phép đo ở độ cao để hiệu chỉnh nó ở mức tham chiếu:

Ở đây chúng ta đã giả định rằng các phép đo được thực hiện tương đối gần bề mặt để R không thay đổi đáng kể. Giá trị của hiệu chỉnh không khí tự do là dương khi được đo ở trên mốc và âm khi được đo dưới mốc. Ngoài ra, có một giả định rằng không có khối lượng tồn tại giữa điểm quan sát và mức tham chiếu. Dị thường Bouguer và hiệu chỉnh địa hình được sử dụng để giải thích cho điều này.

Tham khảo

[sửa | sửa mã nguồn]
  1. ^ a b Fowler, C.M.R. (2005). The Solid Earth: An Introduction to Global Geophysics (ấn bản thứ 2). Cambridge, UK: Cambridge University Press. tr. 205–206. ISBN 978-0-521-89307-7.
  2. ^ “Introduction to Potential Fields: Gravity” (PDF). U.S. Geological Survey Fact Sheets. FS–239–95. 1997. Truy cập ngày 30 tháng 5 năm 2019.
  3. ^ Lillie, R.J. (1998). Whole Earth Geophysics: An Introductory Textbook for Geologists and Geophysicists. Prentice Hall. ISBN 978-0-13-490517-4.
  4. ^ Telford, W.M.; Geldart, L.P.; Sheriff, R.E. (1990). Applied Geophysics (2nd edition). Cambridge: Cambridge University Press. tr. 11–12. ISBN 978-0-521-32693-3.
Chúng tôi bán
Bài viết liên quan
Định Luật Hubble - Thứ lý thuyết có thể đánh bại cả Enstein lẫn thuyết tương đối?
Định Luật Hubble - Thứ lý thuyết có thể đánh bại cả Enstein lẫn thuyết tương đối?
Các bạn có nghĩ rằng các hành tinh trong vũ trụ đều đã và đang rời xa nhau không
Thời điểm “vàng” để giáo dục giới tính cho trẻ
Thời điểm “vàng” để giáo dục giới tính cho trẻ
Khi nói chuyện với con về chủ đề giới tính và tình dục, ba mẹ hãy giải thích mọi thứ phù hợp với độ tuổi, khả năng tiếp thu của con
Thông tin nhân vật Dark King: Silvers Rayleigh
Thông tin nhân vật Dark King: Silvers Rayleigh
Silvers Rayleigh có biệt danh là '' Vua Bóng Tối '' . Ông là Thuyền Viên Đầu Tiên Của Vua Hải Tặc Roger
Giới thiệu Cosmo the Space Dog trong MCU
Giới thiệu Cosmo the Space Dog trong MCU
Chú chó vũ trụ Cosmo cuối cùng cũng đã chính thức gia nhập đội Vệ binh dải ngân hà trong Guardians of the Galaxy