Nhóm hoán vị

Trong toán học, một nhóm hoán vị là một nhóm G có các phần tử là các hoán vị của một tập hợp cho trước M, và phép toán trên nhóm là phép toán hợp hay tích các hoán vị trong G (hoán vị được xem là một song ánh từ tập M đến chính nó); quan hệ này thường được ký hiệu là (G, M). Lưu ý rằng nhóm tất cả các hoán vị của một tập hợp là một nhóm đối xứng; khái niệm nhóm hoán vị thường để chỉ một nhóm con của nhóm đối xứng. Nhóm đối xứng của n phần tử được ký hiệu bằng Sn; nếu M là một tập hữu hạn hoặc vô hạn, nhóm tất cả các hoán vị của M thường được ký hiệu là Sym(M).

Những phép hoán vị thường được biểu diễn dưới dạng chu trình, như vậy với tập hợp M {1,2,3,4}, một hoán vị g của M có g(1)=2, g(2)4, g(4)=1 và g(3)=3 sẽ được biểu diễn dưới dạng (1,2,4) (3), hoặc thông dụng hơn, (1,2,4) bởi vì 3 không thay đổi; nếu các đối tượng được ký hiệu bằng các chữ cái hoặc chữ số, ta còn có thể bỏ qua dấu phẩy, nhu vậy ta có ký hiệu (1 2 4).

Xét tập các hoán vị G sau của tập hợp M = {1,2,3,4}:

  • e = (1)(2)(3)(4)
    • Đây là hoán vị đồng nhất, hoán vị tầm thường không làm thay đổi vị trí các phần tử.
  • a = (1 2)(3)(4) = (1 2)
    • Hoán vị này đổi chỗ 1 và 2, và giữ nguyên vị trí của 3 và 4.
  • b = (1)(2)(3 4) = (3 4)
    • Giống như trường hợp trước, nhưng đổi chỗ 3 và 4, và giữ nguyên phần còn lại.
  • ab = (1 2)(3 4)
    • Hoán vị này, là hợp của hai phép hoán vị trước, đổi chỗ 1 với 2, và 3 với 4.

G tạo thành một nhóm, bởi vì aa = bb = e, ba = ab, và baba = e. Do đó (G, M) tạo thành một nhóm hoán vị.

Trò chơi khối Rubik là ví dụ khác về một nhóm hoán vị. Tập hợp các phần tử được hoán vị chính là các khối lập phương con được tô màu của toàn bộ khối lập phương. Mỗi phép xoay một mặt của khối lập phương là một hoán vị các vị trí và hướng của các khối lập phương con. Đi với nhau, các phép xoay sẽ tạo thành một tập sinh, và sẽ sinh ra một nhóm bằng hợp của các phép xoay. Ta dễ dàng nhận ra các tiên đề của nhóm được thỏa mãn.

Những ví dụ khác về nhóm hoán vị: trò chơi kaleidoscopetrò chơi eightfold.

Đọc thêm

[sửa | sửa mã nguồn]

Tham khảo

[sửa | sửa mã nguồn]
  • John D. Dixon and Brian Mortimer. Permutation Groups. Number 163 in Graduate Texts in Mathematics. Springer-Verlag, 1996.
  • Akos Seress. Permutation group algorithms. Cambridge Tracts in Mathematics, 152. Cambridge University Press, Cambridge, 2003.
  • Meenaxi Bhattacharjee, Dugald Macpherson, Rögnvaldur G. Möller and Peter M. Neumann. Notes on Infinite Permutation Groups. Number 1698 in Lecture Notes in Mathematics. Springer-Verlag, 1998.
  • Alexander Hulpke. GAP Data Library "Transitive Permutation Groups" Lưu trữ 2021-01-19 tại Wayback Machine.
Chúng tôi bán
Bài viết liên quan
JR Pass là gì? Hướng dẫn sử dụng JR Pass đi khắp nước Nhật dễ dàng
JR Pass là gì? Hướng dẫn sử dụng JR Pass đi khắp nước Nhật dễ dàng
Bạn muốn đi nhiều nơi tại Nhật nhưng chi phí đi lại thì quá cao? Hãy yên tâm, lựa chọn của bạn sẽ đơn giản hoá hơn nhiều khi đã có JR Pass là có thể di chuyển khắp mọi miền quê ở đất nước mặt trời mọc
Yōkoso Jitsuryoku Shijō Shugi no Kyōshitsu e - chương 7 - vol 9
Yōkoso Jitsuryoku Shijō Shugi no Kyōshitsu e - chương 7 - vol 9
Ichinose có lẽ không giỏi khoản chia sẻ nỗi đau của mình với người khác. Cậu là kiểu người biết giúp đỡ người khác, nhưng lại không biết giúp đỡ bản thân. Vậy nên bây giờ tớ đang ở đây
Shinichiro Sano -  Tokyo Revengers
Shinichiro Sano - Tokyo Revengers
Shinichiro Sano (佐野さの 真一郎しんいちろう Sano Shin'ichirō?) là người sáng lập và Chủ tịch thế hệ đầu tiên của Black Dragon
Cảm nhận về Saltburn: Hành trình đoạt vị của anh đeo kính nghèo hèn
Cảm nhận về Saltburn: Hành trình đoạt vị của anh đeo kính nghèo hèn
Đầu tiên, phim mở màn với những tình huống khá cliché của một cậu sinh viên tên Oliver Quick đang trên hành trình hòa nhập với những sinh viên khác của trường Đại học Oxford