Phương trình Pell (Pell's equation) là bài toán tìm nghiệm nguyên Diophantine bậc hai với yêu cầu là giải một trong những phương trình nghiệm nguyên sau:
dạng chính tắc (còn gọi là phương trình Pell loại I):
Với d là số nguyên dương và không phải là số chính phương.
Ngoài ra, còn có các dạng:
Phương trình Pell chứa tham số:
,
Phương trình Pell dạng tổng quát:
.
Lagrange chứng minh rằng với d không phải là số chính phương, phương trình Pell có vô số nghiệm nguyên dương.
Phương trình được đặt tên là Pell bắt nguồn từ sơ suất của Leonhard Euler. Khi Euler đọc tác phẩm của Lord Brouncker, nhà toán học châu Âu đầu tiên tìm ra lời giải tổng quát của bài toán, Euler đã nhầm Brouncker với John Pell.
Phương trình này được nghiên cứu đầu tiên ở Ấn Độ cổ đại, bởi Brahmagupta (Brahmagupta là người đã phát triển phương pháp chakravala nhằm giải quyết phương trình Pell và các phương trình bậc hai bất định khác trong tác phẩm Brahma Sphuta Siddhanta vào năm 628, trước Pell 1000 năm). Tác phẩm Brahma Sphuta Siddhanta đã được dịch sang tiếng Arap vào năm 773, và dịch sang tiếng Latin vào năm 1126. Ngoài ra, Braskara II vào thế kỉ 12 và Narayana vào thế kỉ 14 đã tìm ra lời giải tổng quát cho phương trình Pell và các phương trình bậc hai bất định khác.
Lời giải cho một số dạng đặc biệt của phương trình Pell (ví dụ khi số biến nhiều hơn 2), đã được biết đến từ rất lâu ít nhất là từ thời Pi-ta-go ở Hy Lạp cổ.
Muốn biết rõ hơn, hãy xem Lenstra (2002) and Barbeau (2003).
Từ năm 400 TCN, ở Ấn Độ và Hy Lạp, người ta đã nghiên cứu phương trình Pell. Chủ yếu trong trường hợp riêng:
vì có nghiệm liên quan đến căn bậc hai của 2. Cụ thể hơn, nếu x, y là nghiệm nguyên của phương trình này, thì x / yxấp xỉ. Braudhayana khám phá ra rằng, với x = 17, y = 12 và x = 577, y = 408 là 2 nghiệm của phương trình Pell, đồng thời 17 / 12, 577 / 408xấp xỉ rất sát với .
Sau đó, Ácsimét đã sử dụng một phương trình tương tự để ước lượng căn bậc hai của 3, và tìm ra phân số 1351/780.
Vào khoảng năm 250 Công Nguyên, Diophantus (Diophantine) đã nghiên cứu 1 dạng khác của phương trình Pell:
Diophantus đã giải phương trình trong trường hợp a = 1 và c = −1, 1, và 12, và cho a = 3 và c = 9.
Brahmagupta phát minh ra phương pháp tổng quát cho phương trình Pell, được biết đến với tên gọi phương pháp chakravala. Alkarkhi cũng nghiên cứu các vấn đề tương tự như Diophantus. Bhāskara I đã sáng tạo ra phương pháp sinh các nghiệm mới từ một nghiệm đã biết, công trình này được E. Strachey xuất bản bằng tiếng Anh vào năm 1813.
Vào năm 1766-1769, Lagrange đã phát triển 1 lý thuyết tổng quát về phương trình Pell, dựa trên phân số liên tục và các thao tác đại số với các số thực có dạng .[1]
Nhận xét, nếu (x,y) là nghiệm nguyên của phương trình đã cho thì (-x,y), (x,-y), (-x,-y) cũng là nghiệm, do đó ta chỉ cần quan tâm đến các nghiệm nguyên không âm.
Phương trình Pell luôn có nghiệm tầm thường là x=1, y=0. Do đó, ta chỉ quan tâm đến các nghiệm nguyên không âm và không tầm thường.
Trong các bài toán cụ thể, ngay cả nghiệm nhỏ nhất cũng có thể rất lớn. Và trong nhiều trường hợp, người ta phải biểu diễn nó dưới dạng gọn hơn là:
với các hệ số ai, bi, and ci nhỏ hơn rất nhiều (nếu so sánh với nghiệm nhỏ nhất).
Ví dụ, bài toán đàn gia súc Archimedes có thể giải quyết bằng cách dùng phương trình Pell, nhưng nghiệm nhỏ nhất của nó quá lớn, nếu viết hết nghiệm này ra giấy có thể đến 206545 chữ số. Và như thế phải viết nghiệm đó dưới dạng rút gọn:
Các phương pháp liên quan đến sàng toàn phương (quadratic sieve) (dùng trong phân tích số ra ước số nhỏ hơn (integer factoriaztion)), được dùng để tập hợp các mối quan hệ giữa các số nguyên tố trong trường số tổng quát hóa bởi √n, và kết hợp các mối quan hệ này nhằm tìm ra dạng biểu diễn của dạng số đó. Những thuật toán sử dụng phương trình Pell hiệu quả hơn các thuật toán dùng liên phân số rất nhiều; bởi vì hàm thời gian của các thuật toán dùng phương trình Pell không phải là các hàm đa thức. Sử dụng giả thiết Riemann tổng quát hóa (generalized Riemann hypothesis), ta ước lượng được thời gian:
với N = log n kích thước dữ liệu vào, đối với sàng toàn phương (Lenstra 2002).
Legendre đã chứng minh rằng nếu d là số nguyên tố có dạng 4m+3 thì phương trình (eq3)có nghiệm, cụ thể hơn:
nếu d là số nguyên tố có dạng 8m+3, phương trình sau có nghiệm
nếu d là số nguyên tố có dạng 8m+7, phương trình sau có nghiệm .
Phương trình (eq3) có các nghiệm liên hệ với phương trình Pell ở dạng chính tắc. Thật vậy, nếu ta bình phương hai vế của nó:
Thay ta được
.
Như vậy nếu (u,v) là nghiệm của phương trình:, thì là nghiệm của phương trình Pell chính tắc sau . Ví dụ với d=3, (u,v) = (1,1) là nghiệm của , thì (x,y) = (2,1) là nghiệm của .
II. k = 4:
(eq.4)
Từ nghiệm của (eg.4) có thể tìm ra nghiệm của phương trình Pell chính tắc (cả Pell âm) với d tương ứng. Xem dạng biến thể [3], nếu nghiệm {u,v} đều là lẻ, thì có thể tìm được nghiệm cơ bản {x,y}.
1. Nếu u2-dv2 = -4, và {x,y} = {(u2+3)u/2, (u2+1)v/2}, thì x2-dy2 = -1.
Ví dụ: Cho d = 13, thì {u,v} = {3, 1}và {x,y} = {18, 5}.
2. Nếu u2-dv2 = 4, và {x,y} = {(u2-3)u/2, (u2-1)v/2}, thì x2-dy2 = 1.
Ví dụ. Cho d = 13, thì {u,v} = {11, 3} và {x,y} = {649, 180}.
3. Nếu u2-dv2 = -4, và {x,y} = {(u4+4u2+1)(u2+2)/2, (u2+3)(u2+1)uv/2}, thì x2-dy2 = 1.
Ví dụ. Cho d = 61, thì {u,v} = {39, 5} và {x,y} = {1766319049, 226153980}.
III.
Nếu (x,y) là nghiệm của phương trình thì (u,v) = (ax, ay) là nghiệm của .
Barbeau, Edward J. (2003), Pell's Equation, Problem Books in Mathematics, Springer-Verlag, MR1949691, ISBN 0387955291.
Cremona, John E.; Odoni, R. W. K. (1989), “Some density results for negative Pell equations; an application of graph theory”, Journal of the London Mathematical Society. Second Series, 39 (1): 16–28, doi:10.1112/jlms/s2-39.1.16, ISSN0024-6107.