Số Pythagoras

Trong toán học, số Pythagoras hoặc giảm chiều cao của một trường (đại số) mô tả cấu trúc của tập hợp các ô vuông trong trường. Số Pythagoras p(K) của một trường K là số nguyên dương nhỏ nhất sao cho mỗi ô vuông trong K là tổng của ô p.

Trường Pythagore là một trường với Pythagoras số 1: có nghĩa là mọi ô vuông đều là hình vuông.

  • Mỗi số thực dương là một hình vuông, vì vậy p(R) = 1.
  • Đối với một trường hữu hạn có tính chất kỳ quặc, không phải mọi phần tử đều là hình vuông, nhưng tất cả đều là tổng của hai ô vuông,[1] nên p  = 2.
  • Theo định lý 4 ô vuông của Lagrange, mỗi số hợp lý là tổng của bốn ô vuông, và không phải là tổng của ba ô vuông, do đó, p (Q) = 4.

Tính chất

[sửa | sửa mã nguồn]
  • Mỗi số nguyên dương xuất hiện như số Pythagoras của một số trường thực sự chính thức.[2]
  • Các số Pythagoras có liên quan đến Stufe bằng p(F) ≤ s(F) + 1.[3] Nếu F không phải số thực thì s(F) ≤ p(F) ≤ s(F) + 1,[4] và cả hai trường hợp đều có thể: cho F = C chúng ta có s = p = 1, trong khi F = F5 chúng ta lại có s = 1, p = 2.[5]
  • Số Pythagoras có liên quan đến chiều cao của trường F: nếu F là số thực thì h (F) là công suất nhỏ nhất của 2 không nhỏ hơn p (F); nếu F không là số thực thì h (F) = 2 s (F).[6] Do đó, số Pythagoras của một trường không thực sự chính thức, nếu hữu hạn, hoặc là một sức mạnh của 2 hoặc 1 ít hơn một sức mạnh của 2, và tất cả các trường hợp xảy ra.[7]
  1. ^ Lam (2005) p. 36
  2. ^ Lam (2005) p. 398
  3. ^ Rajwade (1993) p. 44
  4. ^ Rajwade (1993) p. 228
  5. ^ Rajwade (1993) p. 261
  6. ^ Lam (2005) p. 395
  7. ^ Lam (2005) p. 396

Tham khảo

[sửa | sửa mã nguồn]
  • Lam, Tsit-Yuen (2005). Introduction to Quadratic Forms over Fields. Nghiên cứu về Toán học. Quyển 67. American Mathematical Society. ISBN 0-8218-1095-2. MR 2104929. Zbl 1068.11023.
  • Rajwade, A. R. (1993). Squares. London Mathematical Society Lecture Note Series. Quyển 171. Cambridge University Press. ISBN 0-521-42668-5. Zbl 0785.11022.
Chúng tôi bán
Bài viết liên quan
Tổng hợp các bài hát trong Thor: Love And Thunder
Tổng hợp các bài hát trong Thor: Love And Thunder
Âm nhạc trong Thor - Love And Thunder giúp đẩy mạnh cốt truyện, nâng cao cảm xúc của người xem
Tóm tắt One Piece chương 1097: Ginny
Tóm tắt One Piece chương 1097: Ginny
Kuma năm nay 17 tuổi và đã trở thành một mục sư. Anh ấy đang chữa lành cho những người già nghèo khổ trong vương quốc bằng cách loại bỏ nỗi đau trên cơ thể họ bằng sức mạnh trái Ác Quỷ của mình
Trùng trụ Kochou Shinobu trong Kimetsu no Yaiba
Trùng trụ Kochou Shinobu trong Kimetsu no Yaiba
Kochou Shinobu「胡蝶 しのぶ Kochō Shinobu」là một Thợ Săn Quỷ, cô cũng là Trùng Trụ của Sát Quỷ Đội.
Shiina Mashiro - Sakurasou No Pet Na Kanojo
Shiina Mashiro - Sakurasou No Pet Na Kanojo
Shiina Mashiro (椎名 ましろ Shiina Mashiro) là main nữ trong "Sakurasou no Pet Na Kanojo" và hiện đang ở tại phòng 202 trại Sakurasou. Shiina có lẽ là nhân vật trầm tính nhất xuyên suốt câu chuyện.