Số Pythagoras

Trong toán học, số Pythagoras hoặc giảm chiều cao của một trường (đại số) mô tả cấu trúc của tập hợp các ô vuông trong trường. Số Pythagoras p(K) của một trường K là số nguyên dương nhỏ nhất sao cho mỗi ô vuông trong K là tổng của ô p.

Trường Pythagore là một trường với Pythagoras số 1: có nghĩa là mọi ô vuông đều là hình vuông.

  • Mỗi số thực dương là một hình vuông, vì vậy p(R) = 1.
  • Đối với một trường hữu hạn có tính chất kỳ quặc, không phải mọi phần tử đều là hình vuông, nhưng tất cả đều là tổng của hai ô vuông,[1] nên p  = 2.
  • Theo định lý 4 ô vuông của Lagrange, mỗi số hợp lý là tổng của bốn ô vuông, và không phải là tổng của ba ô vuông, do đó, p (Q) = 4.

Tính chất

[sửa | sửa mã nguồn]
  • Mỗi số nguyên dương xuất hiện như số Pythagoras của một số trường thực sự chính thức.[2]
  • Các số Pythagoras có liên quan đến Stufe bằng p(F) ≤ s(F) + 1.[3] Nếu F không phải số thực thì s(F) ≤ p(F) ≤ s(F) + 1,[4] và cả hai trường hợp đều có thể: cho F = C chúng ta có s = p = 1, trong khi F = F5 chúng ta lại có s = 1, p = 2.[5]
  • Số Pythagoras có liên quan đến chiều cao của trường F: nếu F là số thực thì h (F) là công suất nhỏ nhất của 2 không nhỏ hơn p (F); nếu F không là số thực thì h (F) = 2 s (F).[6] Do đó, số Pythagoras của một trường không thực sự chính thức, nếu hữu hạn, hoặc là một sức mạnh của 2 hoặc 1 ít hơn một sức mạnh của 2, và tất cả các trường hợp xảy ra.[7]
  1. ^ Lam (2005) p. 36
  2. ^ Lam (2005) p. 398
  3. ^ Rajwade (1993) p. 44
  4. ^ Rajwade (1993) p. 228
  5. ^ Rajwade (1993) p. 261
  6. ^ Lam (2005) p. 395
  7. ^ Lam (2005) p. 396

Tham khảo

[sửa | sửa mã nguồn]
  • Lam, Tsit-Yuen (2005). Introduction to Quadratic Forms over Fields. Nghiên cứu về Toán học. 67. American Mathematical Society. ISBN 0-8218-1095-2. MR 2104929. Zbl 1068.11023.
  • Rajwade, A. R. (1993). Squares. London Mathematical Society Lecture Note Series. 171. Cambridge University Press. ISBN 0-521-42668-5. Zbl 0785.11022.
Chúng tôi bán
Bài viết liên quan
Top 10 món ngon Sapa ăn là ghiền
Top 10 món ngon Sapa ăn là ghiền
Nhiều người chọn đến với Sa Pa không chỉ vì núi non hùng vĩ hay thời tiết se lạnh, mà còn vì những món đặc sản Tây Bắc mang sức hút riêng
Lịch sử ngoài đời thật cho tới các diễn biến trong Attack on Titan
Lịch sử ngoài đời thật cho tới các diễn biến trong Attack on Titan
Attack on Titan là một bộ truyện có cốt truyện rất hấp dẫn, đừng nên đọc để bảo toàn trải nghiệm tận hưởng bộ truyện nếu bạn chưa đọc truyện.
Viết cho những chông chênh tuổi 30
Viết cho những chông chênh tuổi 30
Nếu vẫn ở trong vòng bạn bè với các anh lớn tuổi mà trước đây tôi từng chơi cùng, thì có lẽ giờ tôi vẫn hạnh phúc vì nghĩ mình còn bé lắm
Tổng quan về Vua thú hoàng kim Mech Boss Chunpabo
Tổng quan về Vua thú hoàng kim Mech Boss Chunpabo
Sau khi loại bỏ hoàn toàn giáp, Vua Thú sẽ tiến vào trạng thái suy yếu, nằm trên sân một khoảng thời gian dài. Đây chính là lúc dồn toàn bộ combo của bạn để tiêu diệt quái