Số thập phân vô hạn tuần hoàn

Một số thập phân vô hạn tuần hoànbiểu diễn thập phân của một số có phần thập phân lặp lại (lặp lại giá trị của nó ở các khoảng đều đặn) và phần lặp lại vô hạn không phải là số không. Có thể chứng minh được rằng một số là hữu tỉ khi và chỉ khi phần biểu diễn thập phân của nó lặp lại theo chu kỳ hoặc là hữu hạn. Ví dụ, biểu diễn thập phân của ⅓ trở nên lặp lại ngay sau dấu phẩy phân cách thập phân, với số 3 lặp lại mãi, 0.333…. Một ví dụ phức tạp hơn là 3227/555, trong đó phần biểu diễn thập phân trở nên tuần hoàn sau chữ số thứ hai của phần thập phân và lặp lại chuỗi "144" vô hạn: 5.8144144144…. Hiện tại, không có cách viết duy nhất được chấp nhận rộng rãi cho các phần thập phân lặp lại này.

Chuỗi số lặp đi lặp lại vô hạn được gọi là phần lặp lại của số này. Nếu phần lặp lại là một số không, biểu diễn thập phân này được gọi là số thập phân hữu hạn chứ không phải là số thập phân lặp lại, vì các số không được bỏ qua trong biểu thức biểu diễn số này. Bất kỳ các số thập phân hữu hạn đều có thể biểu diễn bằng phân số hệ thập phân, là một phân số với mẫu số là một lũy thừa của 10 (chẳng hạn 1.585 = 1585/1000); nó có thể viết thành một tỷ lệ dưới dạng k/2n5m với k không chia hết cho 2 và 5 (chẳng hạn 1.585 = 317/2352). Tuy nhiên, mọi số có diễn đạt thập phân hữu hạn cũng có một cách diễn đạt thay thế thứ hai như là một số thập phân lặp lại với phần lặp lại là vô hạn số 9. Điều này có được bằng cách giảm số cuối cùng đi 1 và nối thêm vô hạn số 9. 1.000... = 0.999…1.585000... = 1.584999… là hai ví dụ. (Kiểu thập phân lặp lại này có thể thu được bằng phép chia số lớn nếu ta sử dụng một dạng biến đổi của thuật toán chia thông thường.)

Bất kỳ số nào mà không thể biểu diễn như một tỷ lệ của hai số nguyên được gọi là số vô tỉ. Việc biểu diễn thập phân của chúng không chấm dứt hay lặp lại vô hạn nhưng kéo dài mãi mãi mà không lặp lại thường xuyên. Ví dụ về các số vô tỉ như vậy là căn bậc hai của 2 và số pi.

Bảng giá trị

[sửa | sửa mã nguồn]
Phân số Giá trị Độ dài lặp lại Phân số Giá trị Độ dài lặp lại Phân số Giá trị Độ dài lặp lại
1/2 0.5 0 1/17 0.0588235294117647 16 1/32 0.03125 5
1/3 0.3 1 1/18 0.05 2 1/33 0.03 2
1/4 0.25 0 1/19 0.052631578947368421 18 1/34 0.02941176470588235 16
1/5 0.2 0 1/20 0.05 2 1/35 0.0285714 6
1/6 0.16 2 1/21 0.047619 6 1/36 0.027 3
1/7 0.142857 6 1/22 0.045 2 1/37 0.027 3
1/8 0.125 3 1/23 0.0434782608695652173913 22 1/38 0.0263157894736842105 19
1/9 0.1 1 1/24 0.0416 4 1/39 0.025641 6
1/10 0.1 1 1/25 0.04 2 1/40 0.025 3
1/11 0.09 2 1/26 0.0384615 7 1/41 0.02439 5
1/12 0.083 3 1/27 0.037 3 1/42 0.0238095 7
1/13 0.076923 6 1/28 0.03571428 7 1/43 0.023255813953488372093 21
1/14 0.0714285 7 1/29 0.0344827586206896551724137931 28 1/44 0.0227 4
1/15 0.06 2 1/30 0.03 2 1/45 0.02 2
1/16 0.0625 4 1/31 0.032258064516129 15 1/46 0.02173913043478260869565 23

Tham khảo

[sửa | sửa mã nguồn]

Liên kết ngoài

[sửa | sửa mã nguồn]
Chúng tôi bán
Bài viết liên quan
Đôi nét về cuốn sách Nghệ thuật Kaizen tuyệt vời của Toyota
Đôi nét về cuốn sách Nghệ thuật Kaizen tuyệt vời của Toyota
Kaizen được hiểu đơn giản là những thay đổi nhỏ được thực hiện liên tục với mục tiêu cải tiến một sự vật, sự việc theo chiều hướng tốt lên
Hướng dẫn tìm Pokémon Shiny bản D/P/Pt
Hướng dẫn tìm Pokémon Shiny bản D/P/Pt
Với chúng ta, là những fan pokemon khi bắt gặp 1 chú shiny pokemon thì thật vô cùng sung sướng
Nhật Bản xả nước phóng xạ đã qua xử lý ra biển có an toàn?
Nhật Bản xả nước phóng xạ đã qua xử lý ra biển có an toàn?
Phóng xạ hay phóng xạ hạt nhân là hiện tượng một số hạt nhân nguyên tử không bền tự biến đổi và phát ra các bức xạ hạt nhân
Nhân vật Beta - The Eminence in Shadow
Nhân vật Beta - The Eminence in Shadow
Cô ấy được biết đến với cái tên Natsume Kafka, tác giả của nhiều tác phẩm văn học "nguyên bản" thực sự là phương tiện truyền thông từ Trái đất do Shadow kể cho cô ấy.