Homologická algebra je obor matematiky, který studuje homologii v obecném algebraickém prostředí. Jedná se o relativně mladou disciplínu, jejíž počátky lze vysledovat k výzkumům v kombinatorické topologii (předchůdci algebraické topologie) a abstraktní algebře (teorii modulů a syzygií) na konci 19. století, především Henriho Poincaré a Davida Hilberta.
Vývoj homologické algebry byl úzce spjat se vznikem teorie kategorií. Z většiny homologická algebra zkoumá homologické funktory a složité algebraické struktury, s nimiž souvisí. Jedním z velmi užitečných a poměrně rozšířených konceptů v matematice jsou řetězcové komplexy, které se dají studovat přes jejich homologii a kohomologii. Homologická algebra poskytuje prostředky k získávání informací obsažených v těchto komplexech a prezentuje je ve formě homologických invariant okruhů, modulů, topologických prostorů a dalších „hmatatelných“ matematických objektů. Mocným nástrojem s tímto účelem jsou spektrální sekvence.
Od samého počátku hrála homologická algebra obrovskou roli v algebraické topologii. Její vliv se postupně rozšířil a v současnosti zahrnuje komutativní algebru, algebraickou geometrii, algebraickou teorii čísel, teorii reprezentace, matematickou fyziku, algebry operátorů, komplexní analýzu a teorii parciálních diferenciálních rovnic. K-teorie je nezávislá disciplína, která čerpá z metod homologické algebry stejně jako nekomutativní geometrie Alaina Connese.
Homologická algebra začala být zkoumána ve své nejzákladnější formě v 19. století jako odvětví topologie, ale ve 40. letech se stala nezávislým odvětvím jakožto studium objektů jako například Ext funktor a Tor funktor, mimo ostatní. [1]
Koncept řetězcových komplexů je v homologické algebře klíčový. Abstraktní řetězcový komplex je posloupnost abelovských grup spojených homomorfismy s tou vlastností, že složení dvou po sobě jdoucích zobrazení je nulové zobrazení:
Prvky z Cn se nazývají n-řetězce a homomorfismy dn se nazývají mezní zobrazení nebo diferenciály. Řetězcové grupy Cn mohou mít další strukturu; mohou to být například vektorové prostory nebo moduly nad daným okruhem R. Diferenciály musí tuto nadrámcovou strukturu zachovávat; musí to pak být například lineární mapy nebo homomorfismy R-modulů. Kvůli pohodlí notace omezme pozornost na abelovské grupy (přesněji na kategorii Ab abelovských grup); slavná věta Barryho Mitchella dokazuje, že všechny výsledky se dají zobecnit na jakoukoli abelovskou kategorii. Každý řetězcový komplex definuje dvě další sekvence abelovských grup: cykly a meze kde a označují jádro a obraz d. Vzhledem k tomu, že složení dvou po sobě jdoucích mezních map je nulové, jsou do sebe tyto množiny vloženy:
Podgrupy abelovských grup jsou automaticky normální, a proto můžeme definovat n-tou homologickou grupu Hn(C) jako podílovou grupu n-cyklů podle n-mezí:
Řetězcový komplex se nazývá acyklický nebo exaktní posloupnost, pokud jsou všechny jeho homologické grupy nulové.
Řetězcové komplexy hojně vznikají v algebře a algebraické topologii. Například jestliže X je topologický prostor, pak jsou singulární řetězce Cn(X) formální lineární kombinace spojitých map ze standardního n-simplexu do X; pokud je K simpliciální komplex, potom jsou simpliciální řetězce Cn(K) formální lineární kombinace n-simplexů z K; pokud je prezentace abelovské grupy A podle generátorů a relací, kde F je volná abelovská grupa překlenutá generátory a R je podgrupa relací, pak lze pomocí C1(A) = R, C0(A) = F, a Cn(A) = 0 pro všechna zbylá n definovat posloupnost abelovských grup. Ve všech těchto případech existují přirozené diferenciály dn, které z Cn dělají řetězcový komplex, jehož homologie odráží strukturu topologického prostoru X, simpliciálního komplexu K nebo abelovské grupy A. V případě topologických prostorů se dostáváme k pojmu singulární homologie, která hraje zásadní roli při zkoumání vlastností těchto prostorů, například variet.
Na filozofické úrovni nás homologická algebra učí, že jisté řetězcové komplexy přidružené k algebraickým nebo geometrickým objektům (topologickým prostorům, simpliciálním komplexům, R-modulům) o nich obsahují množství cenných algebraických informací, přičemž právě homologie je ten nejsnáze dostupný nástroj. Na technické úrovni poskytuje homologická algebra nástroje pro manipulaci s komplexy a získávání těchto informací. Zde jsou dva obecné příklady.
V kontextu teorie grup, posloupnosti
grup a grupových homomorfismů se říká exaktní, jestliže obraz (nebo obor hodnot) každého homomorfismu je shodný s jádrem následujícího:
Všimněme si, že taková posloupnost grup a homomorfismů může být konečná i nekonečná.
Podobná definice může být použita i pro některé jiné algebraické struktury. Například lze uvažovat exaktní posloupnost vektorových prostorů a lineárních map nebo modulů a homomorfismů modulů. Obecněji řečeno, koncept exaktní posloupnosti má smysl v každé kategorii s jádry a kojádry.
Nejběžnějším typem exaktní posloupnost je krátká exaktní posloupnost. To je exaktní posloupnost podoby
kde ƒ je monomorfismus a g je epimorfismus. V tomto případě, A je podobjekt B, a odpovídající podíl je izomorfní k C:
(kde ).
Krátkou exaktní posloupnost abelovských grup lze také zapsat jako exaktní sekvenci s pěti členy:
kde 0 představuje nulový objekt, jako je triviální grupa nebo 0rozměrný vektorový prostor. Umístění těchto 0 nutí ƒ být monomorfismem a g epimorfismem (viz níže).
Dlouhá exaktní posloupnost je exaktní posloupnost indexovaná přirozenými čísly.
Uvažujme následující komutativní diagram v jakékoliv abelovské kategorii (jako je kategorie abelovských grup nebo kategorie vektorových prostorů nad daným polem) nebo v kategorii grup.
Lemma pěti říká, že pokud jsou řádky exaktní, m a p jsou izomorfismy, l je epimorfismus a q je monomorfismus, pak je n také izomorfismus.
V abelovské kategorii (jako je kategorie abelovských grup nebo kategorie vektorových prostorů nad daným polem) uvažujme komutativní diagram:
kde řádky jsou exaktní posloupnosti a 0 je nulový objekt. Pak existuje exaktní posloupnost vztahující jádra a kojádra z a, b a c:
Pokud je navíc f monomorfismus, pak je i monomorfismus, a pokud je g epimorfismus, pak je taktéž i
V matematice je abelova kategorie taková kategorie, v níž se dají sčítat morfismy i objekty a v níž existují jádra a kojádra s žádoucími vlastnostmi. Motivačním příkladem abelovské kategorie je kategorie abelovských grup Ab. Teorie vznikla v předběžném pokusu sjednotit několik kohomologických teorií Alexandera Grothendiecka. Abelovské kategorie jsou velmi stabilní kategorie, například jsou regulární a splňují hadí lemma. Třída abelovských kategorií je uzavřena pod několika kategorickými konstrukcemi, například kategorie řetězcových komplexů z abelovské kategorie nebo kategorie funktorů z malé kategorie do abelovské kategorie je také abelovská. Tyto vlastnosti je v homologické algebře i mimo ni nevyhnutelně podbízejí; tato teorie má hlavní aplikace v algebraické geometrii, kohomologii a čisté teorii kategorií. Abelovské kategorie jsou pojmenovány po Nielsi Henriku Abelovi.
Přesněji, kategorie je abelovská, právě když
Nechť R je okruh a nechť ModR je kategorie modulů nad R. Nechť B je v ModR a dejme T(B) = HomR(A, B), pro pevně dané A v ModR. Toto je levý exaktní funktor, a tak má pravé odvozené funktory RnT. Funktor Ext je definován podle
To lze vypočítat tak, že pro jakýkoliv injektivní rozklad:
se spočte:
Poté je (RnT)(B) homologie tohoto komplexu. Všimněme si, že HomR(A, B) není v tom komplexu zahrnut.
Alternativně jej lze definovat pomocí funktoru G(A) = HomR(A, B). Pro pevně daný modul B to je kontravariantní levý exaktní funktor, a tedy dostaneme pravé odvozené funktory RnG a můžeme definovat:
To lze vypočítat výběrem libovolného projektivního rozkladu:
k němuž duálně spočteme:
Poté je (RnG)(A) homologie tohoto komplexu. Znovu si všimněme, že HomR(A, B) je vynechán.
Tyto dvě konstrukce, jak se ukáže, podávají izomorfní výsledky, a proto mohou být obě k výpočtu Ext funktoru použity.
Předpokládejme, že R je okruh, a označme R-Mod kategorii levých R-modulů a Mod-R kategorii pravých R-modulů (pokud je R komutativní, obě kategorie splývají). Uvažujme pevně daný modul B v R-Mod. Pro A v Mod-R nastavme T(A) = A ⊗R B. Pak T je pravý exaktní funktor z Mod-R do kategorie abelovských grup Ab (v případě, že je R komutativní, jedná se o pravý exaktní funktor z Mod-R do Mod-R) a jsou pro něj definovány jeho levé odvozené funktory LnT. Stanovujeme:
tj. vezmeme projektivní rozklad:
a odstraníme člen A a roztenzorujeme ten projektivní rozklad spolu s B, abychom získali komplex:
u nějž určíme homologii (všimněme si, že A ⊗R B zde opět nefiguruje; poslední šipka je nulové zobrazení).
Mějme abelovskou kategorii, jako je například kategorie modulů nad okruhem. Spektrální posloupnost je volba nezáporného celého čísla r0 a souboru tří sekvencí:
Tyto dvojsložkové spektrální posloupnosti mají obrovské množství dat na sledování, ale existuje obecná vizualizační technika, která ukazuje strukturu spektrální sekvence jasněji. Máme tři indexy: r, p a q. U každého r si představme, že máme list milimetrového papíru. Na tomto listu budeme brát p jako horizontální směr a q jako vertikální směr. V každém mřížovém bodě máme objekt
Je velmi běžné brát n = p + q jakožto další přirozený index ve spektrální sekvenci. n vede diagonálně, ze severozápadu k jihovýchodu, přes každý list. V homologickém případě mají diferenciály dvojstupeň (−r, r − 1), takže snižují n o jedna. V kohomologickém případě se n o jednu zvyšuje. Když je r nula, diferenciál posouvá objekty o jeden prostor dolů nebo nahoru. Podobně se chovají diferenciály na řetězcovém komplexu. Když je r jedna, diferenciál přesune objekty o jeden prostor doleva nebo doprava. Když je r dva, diferenciál pohybuje objekty stejně jako rytířův pohyb v šachu. Pro vyšší r se diferenciál chová jako zobecněný rytířský pohyb.
Předpokládejme, že jsme dostali kovariantní levý exaktní funktor F : A → B mezi dvěma abelovskými kategoriemi A a B. Je-li 0 → A → B → C → 0 krátká exaktní posloupnost v A, pak aplikováním F získáme exaktní posloupnost 0 → F(A) → F(B) → F(C) a lze se ptát, jak v této sekvenci pokračovat vpravo, abychom vytvořili dlouhou exaktní posloupnost. Přísně vzato je tato otázka špatně postavená, protože vždy existuje mnoho různých způsobů, jak v dané exaktní sekvenci vpravo pokračovat. Ukazuje se však, že (pokud je A dostatečně „pěkná“) existuje jeden kanonický postup, jak pokračovat - určen pravými funktory odvozenými od F. Pro každé i ≥ 1 existuje funktor RiF : A → B a výše uvedená sekvence pokračuje takto: 0 → F(A) → F(B) → F(C) → R1F(A) → R1F(B) → R1F(C) → R2F(A) → R2F(B) →... . Z toho vidíme, že F je exaktní funktor právě tehdy, když R1F = 0; v jistém smyslu tak odvozené funktory F měří “jak daleko” je F od přesnosti.
Spojitá mapa topologických prostorů dává vzniknout homomorfismu mezi jejich n-tými homologickými grupami pro všechna n. Tento základní poznatek z algebraické topologie nachází přirozené vysvětlení prostřednictvím určitých vlastností řetězcových komplexů. Protože je běžné studovat několik topologických prostorů současně, v homologické algebře se často současně zkoumá více řetězcových komplexů.
Morfismus mezi dvěma řetězcovými komplexy, je rodina homomorfismů abelovských grup které komutují s diferenciály v tom smyslu, že pro všechna n. Morfismus řetězcových komplexů dává vzniknout morfismu jejich homologických grup, skládajících se z homomorfismů pro všechna n. Morfismus F se nazývá kvazi-isomorfismus, pokud dává vzniknout isomorfismu na n-té homologii pro všechna n.
Mnoho konstrukcí řetězcových komplexů vznikajících v algebře a geometrii, včetně singulární homologie, má následující vlastnost funktoriality: jestliže dva objekty X a Y jsou spojeny mapou f, pak přidružené řetězcové komplexy jsou spojeny morfismem a navíc složení map f : X → Y a g : Y → Z vyvolává morfismus který se shoduje s kompozicí Z toho vyplývá, že homologické grupy jsou také funktoriální, takže morfismy mezi algebraickými nebo topologickými objekty dávají vzniknout kompatibilním mapám mezi jejich homologií.
Následující definice vychází z typické situace v algebře a topologii. Trojice skládající se ze tří řetězcových komplexů a dvou morfismů mezi nimi se nazývá eexaktní trojice, nebo krátká exaktní posloupnost komplexů a zapisuje se:
pokud pro libovolné n je posloupnost
krátká exaktní posloupnost abelovských grup. Podle definice to znamená, že fn je prosté, gn je surjekce a im fn = ker gn. Jedna z nejzákladnějších vět homologické algebry, někdy známá jako cikcak lemma, uvádí, že v tomto případě existuje dlouhá exaktní posloupnost v homologii:
kde homologické grupy pro L, M, N a cyklicky následují za sebou, a δn jsou určité homomorfismy určené podle f a g, zvané spojovací homomorfismy. Topologické projevy této věty zahrnují Mayerovu-Vietorisovu sekvenci a dlouhou exaktní posloupnost pro relativní homologii.
Teorie kohomologie byly definovány pro mnoho různých objektů, jako jsou topologické prostory, svazky, grupy, okruhy, Lieovy algebry a C*-algebry. Studium moderní algebraické geometrie by bylo téměř nemyslitelné bez svazkové kohomologie.
V homologické algebře je koncept exaktní posloupnost exaktní; mohou být použity k provádění skutečných výpočtů. Klasickým nástrojem homologické algebry je odvozený funktor; nejzákladnější příklady jsou funktory Ext a Tor.
S ohledem na různorodý soubor aplikací bylo přirozené snažit se obsáhnout všechny tyto případy jednotně. Než se tato oblast ustálila, bylo o sjednocení několik pokusů. Přibližná historie může být uvedena následovně:
Tyto pak od vypočitatelnosti přešly k obecnosti.
Výpočetní perlík par excellence je spektrální posloupnost; tyto posloupnosti jsou nezbytné v postupech Cartana-Eilenberga a Tohoku, kde jsou potřebné například pro výpočet odvozených funktorů složenin dvou funktorů. Spektrální posloupnosti jsou méně důležité v přístupu pomocí odvozené kategorie, ale stále hrají roli vždy, když jsou nezbytné konkrétní výpočty.
Byly pokusy přijít s "nekomutativní" teorií, která rozšíří první kohomologii jako torzory (důležité v Galoisově kohomologii).
V tomto článku byl použit překlad textu z článku Homological algebra na anglické Wikipedii.