V matematice se jako podmnožina množiny A označuje taková množina B, o jejíchž všech prvcích platí, že jsou zároveň i prvky množiny A. Obdobně se může množina A označit jako nadmnožina množiny B. Tato fakta značíme , případně . Relace „být podmnožinou“ se nazývá také inkluze.
Každá množina je svojí podmnožinou. Podmnožina množiny B, která jí není rovna, se označuje jako vlastní podmnožina množiny B. Tzn. žádná množina není svojí vlastní podmnožinou. Relace "být vlastní podmnožinou" se též nazývá ostrá inkluze.[1]
Existují dva obvyklé způsoby zápisu podmnožin: Ve starším systému se symbolem „⊂“ označuje jakákoli podmnožina, zatímco symbolem „⊊“ se označuje vlastní podmnožina. V novějším systému se symbolem „⊂“ označuje vlastní podmnožina (ostrá inkluze)[1], zatímco pro označení obecné podmnožiny se používá symbol „⊆“ (analogický např. k „≤“).
Relace je uspořádání na množině všech podmnožin (tj. na potenční množině) libovolně zvolené množiny - to znamená, že splňuje pravidla reflexivity, tranzitivity a slabé antisymetrie.
Na druhé straně existují na každé množině s alespoň dvěma různými prvky takové podmnožiny, které nejsou srovnatelné - . To znamená, že není úplné, ale pouze částečné uspořádání.
Prázdná množina je nejmenším prvkem libovolné potenční množiny vzhledem k uspořádání .