Bin Yang |
---|
Født | Xi'an, Kina |
---|
Nationalitet | Kinesisk |
---|
Bopæl | Aalborg |
---|
|
Uddannelsessted | Fudanuniversitetet (2007-2010), Northwestern Polytechnical University (2000-2004, 2004-2007) |
---|
Beskæftigelse | Professor |
---|
Fagområde | Kunstig intelligens, big data |
---|
Arbejdsgiver | Aalborg Universitet |
---|
Information med symbolet hentes fra Wikidata. Kildehenvisninger foreligger sammesteds.
|
Bin Yang er professor ved Institut for Datalogi ved Aalborg Universitet. Hans forskningsområde er big data og kunstig intelligens. Han underviser i datalogi[1].
Bin Yang modtog sin bachelor og kandidatgrad fra Northwestern Polytechnical University i Kina i henholdsvis 2004 og 2007 og hans Ph.d. fra Fudan University i Kina i 2010. Fra 2010-2011 arbejdede han ved Databases and Information Systems department ved Max-Planck-Institut für Informatik i Tyskland. Fra 2011-2014 var han ansat ved Institut for Datalogi ved Aarhus Universitet. Siden 2014 har han været ved ansat ved Aalborg Universitet[2].
På nuværende tidspunkt arbejder han på en række forskellige projekter:
- Time Series Analytics and Spatio-temporal Data Management, finansieret af Huawei, 2020 - 2022.
- Light-AI for Cognitive Power Electronics, finansieret af Villum Synergy Programme, 2020 - 2022.
- Advance: A Data-Intensive Paradigm for Dynamic, Uncertain Networks, finansieret af Danmarks Frie Forskningsfond, 2019 - 2023.
- Algorithmic Foundations for Data-Intensive Routing, finansieret af Uddannelses- og Forskningsstyrelsen, 2019 - 2021.
- Astra: AnalyticS of Time seRies in spAtial networks, finansieret af Danmarks Frie Forskningsfond, 2018 - 2021.
- Distinguished Scholar, finansieret af Det Tekniske Fakultet for IT og Design, Aalborg Universitet, 2018 - 2021.
[2]
Bin Yang har modtaget en række priser gennem sin karriere:
- Sapere Aude Research Leader, Danmarks Frie Forskningsfond, 2018.[3]
- Distinguished Scholar, Det Tekniske Fakultet for IT og Design, Aalborg Universitet, 2018.[4]
- Early Career Distinguished Lecturer, 20th IEEE International Conference on Mobile Data Management (MDM), 2019.[5]
- Distinguished Program Committee Member, 28th International Joint Conference on Artificial Intelligence (IJCAI), 2019[6]
- Best paper award at IEEE 14th International Conference on Mobile Data Management (MDM2013), Milan, Italy[7]
- Best demo award at IEEE 14th International Conference on Mobile Data Management (MDM2013), Milan, Italy[7]
- 2015 best paper in Pervasive and Embedded Computing, Shanghai Computer Academy[2]
- Sean Bin Yang, Chenjuan Guo, Jilin Hu, Jian Tang, and Bin Yang. Unsupervised Path Representation Learning with Curriculum Negative Sampling. IJCAI 2021.
- Razvan-Gabriel Cirstea, Tung Kieu, Chenjuan Guo, Bin Yang, and Sinno Jialin Pan. EnhanceNet: Plugin Neural Networks for Enhancing Correlated Time Series Forecasting. ICDE 2021.
- Sean Bin Yang, Chenjuan Guo, and Bin Yang. Context-Aware Path Ranking in Road Networks. TKDE 2021.
- Simon Aagaard Pedersen, Bin Yang, and Christian S. Jensen. Anytime Stochastic Routing with Hybrid Learning. PVLDB 13(9): 1555-1567 (2020).
- Tung Kieu, Bin Yang, Chenjuan Guo, and Christian S. Jensen. Outlier Detection for Time Series with Recurrent Autoencoder Ensembles. IJCAI 2019, 2725-2732.
- Jilin Hu, Chenjuan Guo, Bin Yang, and Christian S. Jensen. Stochastic Weight Completion for Road Networks using Graph Convolutional Networks. ICDE 2019, 1274-1285.
- Chenjuan Guo, Bin Yang, Jilin Hu, and Christian S. Jensen. Learning to Route with Sparse Trajectory Sets. ICDE 2018, 1073-1084.
- Bin Yang, Jian Dai, Chenjuan Guo, Christian S. Jensen, and Jilin Hu. PACE: A PAth-CEntric Paradigm For Stochastic Path Finding. The VLDB Journal 27(2): 153-178 (2018).
- Jian Dai, Bin Yang, Chenjuan Guo, and Zhiming Ding. Personalized Route Recommendation using Big Trajectory Data. ICDE 2015, 543-554, Seoul, Korea, April 2015.
- Bin Yang, Manohar Kaul, and Christian S. Jensen. Using Incomplete Information for Complete Weight Annotation of Road Networks. TKDE 26(5):1267-1279.
- Bin Yang, Chenjuan Guo, and Christian S. Jensen. Travel Cost Inference from Sparse, Spatio-Temporally Correlated Time Series Using Markov Models. PVLDB 6(9):769-780. VLDB 2013, Riva del Garda, Trento, Italy, August 2013.
[8][9]