Tupolew Tu-16 | |
---|---|
Tupolew Tu-16R | |
Typ | Strategischer Bomber |
Entwurfsland | |
Hersteller | OKB Tupolew |
Erstflug | 27. April 1952 |
Indienststellung | Ende 1953 |
Produktionszeit | 1953–1963 |
Stückzahl | 1509 |
Die Tupolew Tu-16 (russisch Туполев Ту-16, NATO-Codename: „Badger“) war einer der ersten einsatzfähigen strahlgetriebenen Bomber und flog zum ersten Mal am 27. April 1952 als Prototyp Typ 88/1 (Projekt „N“). Sie war der zweite strategische Bomber der Sowjetunion. Die Tu-16 befindet sich als Xian H-6 in China bis heute im Einsatz.
Ende der 1940er-Jahre wurde in der Sowjetunion ein Nachfolger für die Tu-4 gesucht. Der neue Bomber sollte bei 800 km/h Marschgeschwindigkeit mindestens 6.000 kg Bombenlast 5.000 km weit befördern können. Nachdem Tupolew zunächst versucht hatte, durch Modernisierung der Tu-4 zur Tu-85 zum Ziel zu kommen, wandte er sich einem kompletten Neuentwurf zu, so dass Anfang 1949 erste Forschungen für den schweren und schnellen Fernbomber 88 begannen. Ein Hauptproblem bestand darin, die relativ großen Mikulin-Triebwerke unterzubringen, die nicht unter die Tragflächen passten. Es wurde letztendlich entschieden, sie beidseitig des Rumpfes anzuordnen, weshalb der Bombenschacht umkonstruiert werden musste. Die offizielle Auftragsvergabe an das OKB Tupolew durch den Ministerrat der UdSSR erfolgte am 10. Juni 1950 mit der Resolution Nr. 2474-974, die Bestätigung durch die Luftstreitkräfte einem Monat später am 10. Juli. Die Ausstattung mit vom Konstruktionsbüro vorgeschlagenen Antrieben vom Typ Mikulin AM-3 wurde ein Jahr später am 5. Juli 1951 genehmigt. Der erste Prototyp 88-1 wurde Anfang 1952 vollendet und am 25. Januar 1952 zum Testgelände in Schukowski überstellt, wo am 27. April der Erstflug durchgeführt wurde. Die anschließende, 46 Flüge umfassende Werkserprobung dauerte bis zum 29. Oktober des Jahres. Die folgende staatliche Abnahme vom November 1952 bis März 1953 verlief unbefriedigend, weshalb Tupolew noch ein zweites, verbessertes Erprobungsflugzeug 88-2 anfertigte und nach der Werkserprobung vom 14. März bis September mit Erstflug am 6. April am 18. September 1953 für die staatlichen Tests übergab, die am 10. April 1954 positiv beendet werden konnten. Am 28. Mai erteilte der Ministerrat die Anweisung für die Serienfertigung,[1] die aber mittlerweile im staatlichen Flugzeugwerk Nr. 22 in Kasan schon angelaufen war.
Als die Tu-16 ab Ende 1953, nur ein Jahr nach dem Erstflug vom 27. April 1952, als strategischer, mittelschwerer Bomber bei den sowjetischen Luftstreitkräften in Dienst gestellt wurde, wies die Maschine eine für ihre Zeit bemerkenswerte Leistungsfähigkeit in Bezug auf Geschwindigkeit und Reichweite auf. Erstmals öffentlich gezeigt wurde die Maschine am 20. Juli 1954 bei der Luftparade in Tuschino.[2] Die Produktion fand außer in Kasan noch in den Werken Nr. 1 in Moskau und Nr. 64 in Woronesch statt.[3] Am 22. November 1955 wurde von einer Tu-16 unter dem Kommando von F. P. Solowaschko erstmals in der Sowjetunion eine Wasserstoffbombe vom Typ RDS-37 von einem Flugzeug aus getestet.[4]
Insgesamt wurden 1509 Tu-16 gebaut, 800 in Kasan, 543 in Moskau und 166 in Woronesch.[5] Die Fernfliegerkräfte der russischen Luftstreitkräfte setzten noch bis 1993 Tu-16 ein.[6]
Die Tu-16 wurde als Mitteldecker mit zwei in den Tragflächen integrierten Triebwerken ausgelegt. Aufgrund des großen Durchmessers der Mikulin-RD-3M-Triebwerke wäre ein Gondeldurchmesser von 1,5 m zu erwarten gewesen, der bei einer Anordnung der Triebwerke unter den Tragflächen einen zu geringen Abstand zum Boden ergeben hätte. Dies führte dann zu der bereits erwähnten Anordnung der Triebwerke beidseitig des Rumpfes in den Tragflächenwurzeln.
Als Vorlage für den Rumpf wurde der Rumpf der Tu-85 verwendet. Um die neuen Triebwerke im Bereich des Mittelrumpfes anordnen zu können, musste dort vom bisherigen kreisförmigen Querschnitt abgegangen und stattdessen der Bombenschacht mit senkrechten Seitenwänden versehen werden. Zwischen den Triebwerken und dem Bombenschacht sollte anschließend nur soviel Material wie notwendig verbleiben. Die Triebwerke wurden mittels Bolzen- und Schraubverbindungen an zwei Chromstahl-Ringspanten mit dem Rumpf verbunden. Eine gelenkige Lagerung des unteren Segmentes sorgte für die Austauschbarkeit der Triebwerke. Oberhalb der Spante wurden die Hauptholme der Tragflächen verschraubt. Die Triebwerkseinläufe haben einen oben abgeflachten runden Querschnitt. Die Schubdüsen sind um 3 Grad von der Längsachse des Rumpfes nach außen gerichtet, um eine thermische Belastung des Rumpfes durch den heißen Abgasstrahl zu vermeiden. Im Flug soll es dadurch keine Beeinträchtigungen geben, und bei einem Ausfall eines Triebwerkes ist die asymmetrische Verteilung des Schubes kaum spürbar. Diese komplexe Rumpf-Triebwerks-Anordnung verschaffte der Tu-16 nicht nur ihre charakteristische Silhouette, sondern reduzierte den Querschnitt um ein Drittel. Diese Reduzierung war nach den Vorgaben der Aerodynamiker des ZAGI erforderlich, um die Flächenregel einzuhalten.
Der Rumpfbug bei der Ursprungsversion und bei mehreren späteren Versionen ist als verglaste Kanzel für den Navigator/Bombenschützen ausgeführt, eine Konstruktion, wie man sie bei vielen Tupolew-Flugzeugen wiederfindet. Nur die Versionen Badger-C/D besitzen am Rumpfbug eine Verkleidung zur Aufnahme der Antenne des Such- und Messradars. Dahinter befindet sich das Cockpit, das außer dem Piloten und Copiloten auch den gegen die Flugrichtung sitzenden Funker/oberen Bordschützen aufnimmt. Dieser Teil der Besatzung besteigt das Flugzeug über eine nach vorn unten aufklappbare Ausziehleiter. Die späteren Varianten sind mit Schleudersitzen ausgestattet. Die im Heck befindlichen Besatzungsmitglieder werden mit dem Schleudersitz nach unten ausgestoßen.
Hinter der Cockpitsektion und vor dem Bombenschacht befindet sich der vordere Kraftstofftank. Dieser ist wie der hintere als Integraltank ausgeführt und nimmt dabei den kompletten Rumpfquerschnitt ein. Der Waffenschacht ist im Tragflächenmittelstück platziert. In den Versionen mit vorhandenem Waffenschacht ist dieser mittels elektronisch bedienter Klappen ausgestattet. Für den Einsatz von Kernwaffen kann der Waffenschacht auch beheizt werden. In Aufklärungs- und Eloka-Versionen ist der Waffenschacht für die Aufnahme des Einsatzsystems umgebaut. An den Schachtklappen von für das Tragen von Flugkörpern ausgelegten Versionen befinden sich Aufhängestationen zur Aufnahme der Flugkörper.
Im Rumpfheck befinden sich die Plätze für den Heckschützen/Beobachter und den zweiten Funker/Bordschützen. Ersterer hat dafür eine eigene Station, während der andere über zwei seitliche Sichtkuppeln verfügt. Für den Zugang zu den Plätzen im Heck befinden sich unter dem Rumpf zwei ausklappbare Zugangsleitern, die im Falle eines Notausstieges öffnen und in dieser Position als Windbrecher fungieren, um so mit dem Fallschirm sicher auszusteigen. Es gibt keinen Verbindungstunnel zwischen der Cockpit- und der Hecksektion.
Die bemannten Bereiche sind druckbelüftet und mit schall- und wärmedämmenden Verkleidungen ausgestattet. Die Außenhaut des im Querschnitt kreisförmigen Rumpfes ist 1 bis 2 mm dick, an stärker belasteten Bereichen bis zu 3 mm. Sein größter Querschnitt beträgt 2,5 m.
Die Tragflächen weisen eine Spannweite von 32,93 m auf, haben eine Flügelfläche von 164,65 m² und sind zweifach gepfeilt. Der innere Teil der Tragfläche weist eine Pfeilung von 40,5° bis zum ersten Grenzschichtzaun auf. Die restliche Tragfläche ist mit 37,5° (gemessen jeweils an der Flügelvorderkante) gepfeilt. Je Tragfläche sind zwei Grenzschichtzäune vorhanden. Zur Einhaltung der Flächenregel an den Tragflächen sind gondelförmige Verdickungen an den Hinterkanten angebracht, die zur Entlastung erforderlich sind. Die Tragfläche ist eine Doppelholmkonstruktion, wobei bei der Gestaltung die Anordnung der Triebwerk seitlich am Rumpf auch hier Probleme bereitete. Um die Luftzufuhr durch die Lufteinlasskanäle zu den Triebwerken zu ermöglichen, musste hier der Holm durchbrochen werden und ein zum Lufteinlauf der Triebwerksgondel entsprechender Querschnitt eingehalten werden. Dazu wurde ein trapezförmiges Holmendstück entworfen, das an der breiten Seite an den Rumpf und an der schmalen Seite an den Holm montiert wurde.
Als Hochauftriebshilfen verfügt die Tu-16 über je zwei zweiteilige Landeklappen pro Tragfläche (durch den Fahrwerksbehälter getrennt), die als Spaltklappen ausgeführt sind. Sie sind mittels Elektromotoren und Achsspindeln bis zu 35° ausfahrbar. An der Außenseite der Tragflächen sind hinter dem zweiten Grenzschichtzaun die einteilig ausgeführten Querruder angebracht. Diese sind mit innerem Achsausgleich versehen und besitzen jeweils ein zwangsgekoppeltes Trimmruder. Der Antrieb der Querruder erfolgt über Hydraulikverstärker. Die Vorderkanten der Tragflächen sind starr und werden wie die Lufteinlässe mit Zapfluft enteist.
An den Backbord-Tragflächenenden der meisten Tu-16 befindet sich das Aufnahmegeschirr für die Luftbetankung. Diese hat bei der Tu-16 die Besonderheit, dass sie über eine „Flügel-zu-Flügel“-Schlauchverbindung erfolgt. Die dafür spezialisierten Lufttanker besitzen am Ende der Steuerbord-Tragfläche eine Luftbetankungsvorrichtung mit einem Tankschlauch. Die meisten anderen Tu-16-Versionen besitzen stattdessen am Ende der Steuerbord-Tragfläche ein Kraftstoffschnellablassrohr. Die Druckbetankung erfolgt über Betankungsanschlüsse an der Tragflächenunterseite auf beiden Tragflächen.
Zur Wartung des Triebwerks sind auf Ober- und Unterseite große Wartungsklappen vorhanden, um einen guten Zugang zum Triebwerk zu gewährleisten.
Das Leitwerk ist als Kreuzleitwerk ausgelegt. Das Seitenleitwerk ist gepfeilt und besitzt zum Ende hin nur eine geringe Streckung. Das einteilige Seitenruder ist mit einer Hilfsklappe versehen und wird über einen Kraftverstärker angesteuert. Die starren gepfeilten Höhenleitwerke haben einteilige Höhenruder, die handbetätigt werden und automatisch mitgeführte Hilfsklappen besitzen.
Die Tu-16 besitzt ein doppelt bereiftes Bugfahrwerk und, anders als beim Vorgängermodell Tu-85, zwei vierrädrige Hauptfahrwerke. Diese Konfiguration ermöglicht den Betrieb auf schlecht präparierten Pisten. Durch die Anordnung der Triebwerke war ein Einfahren der Hauptfahrwerke in den Rumpf nicht möglich. Aus diesem Grund wurden an den Tragflächen gondelförmige Verdickungen angebracht. Das Fahrwerk fährt ein, indem die vorderen Räder nach hinten und die hinteren nach vorn kippen. Diese Gondeln dienen auch der Einhaltung der Flächenregel. Um einen Tailstrike bei Starts und Landungen zu verhindern, ist am Heck ein einziehbarer Hecksporn vorhanden. Alle Fahrwerke, der Hecksporn und die Bremsen werden hydraulisch angesteuert.
Die Tu-16 besitzt eine umfangreiche Elektronikausrüstung, die sich zwischen den einzelnen Versionen aufgrund der unterschiedlichen Verwendungszwecke unterscheidet. Von der Rumpfoberseite zum Seitenleitwerksende ist die VHF-Peitschenantenne des Funkgerätes RSIU-3M gespannt. Weiterhin sind beidseitig hinter dem Cockpit Antennengatter für Kurzwellenfunk zur Kommunikation über große Entfernungen angebracht. Unter dem Rumpf befinden sich noch zwei weitere VHF-Antennen, die an die VHF-Funkgeräte Nr. 1 und 2 angeschlossen sind. Die IFF-Antenne befindet sich auf der Rumpfunterseite am Heck.
An der Rumpfunterseite ist unter einer tropfenförmigen Verkleidung das Argon-Navigations- und Bombenzielradar angebracht. Die Schiffsbekämpfungsversion Badger-C und der ELINT-Aufklärer Badger-D besitzen anstelle der Bugverglasung ein großes Radom zur Aufnahme des Such- und Entfernungsmessradars. Auch über dem Heckstand befindet sich ein Radar zur Überwachung des Bereiches hinter dem Flugzeug. Es wird bei der NATO als „Bee Hind“ bezeichnet und wird vom Heckschützen zum Richten der Heckwaffen bedient.
Für die Flugführung besitzt die Tu-16 VOR, ILS und vor dem Bombenschacht den Funkhöhenmesser RV-17.
Die Mehrzahl der Avionikausrüstung befindet sich in Schränken hinter der Cockpitsektion.
Die Hauptvarianten waren die der Tu-16- und Tu-16A-Bomber, die Raketenträger Tu-16KS und Tu-16K-10, die Tu-16SPS, „Elka“ und Tu-16Je als ECM-Flugzeug, die Tu-16R als Aufklärungsflugzeug und die Tu-16T-Torpedobomber. Andere Ableitungen wurden aus Umbau produziert. Einzelne Flugzeuge (vor allem die Raketenträger) wurden mehrmals modifiziert, um den Anforderungen zu entsprechen.
China entwickelte auf der Grundlage von aus der Sowjetunion gelieferten Tu-16-Bausätzen seine eigene Variante, die Xian H-6.
Ägypten hat seine 20 Badger-A, die von der damaligen Sowjetunion geliefert wurden, im Sechstagekrieg durch Angriffe der Israelis verloren. An deren Stelle erhielt die ägyptische Luftwaffe 1971 neue Badger-G-Angriffsflugzeuge mit Luft-Boden-Raketen KSR-2 (russisch КСР-2П). Eine Badger-G stürzte am 1. September 1975 in Ägypten ab.
Durch die sowjetischen Luftstreitkräfte wurden Tu-16 in Afghanistan eingesetzt. Welche Version und ob als Bomber oder in einer anderen Rolle, ist nicht bekannt.[6]
Kenngröße | Daten der Tu-16A („Badger-A“) |
---|---|
Besatzung | 6 |
Rettungssystem | 6 Schleudersitze für die Besatzungsmitglieder, in älteren Varianten Rundkappen-Fallschirme |
Länge | 36,25 m |
Spannweite | 32,99 m |
Höhe | 10,36 m |
Flügelfläche | 164,65 m² |
Flügelstreckung | 6,61 |
Flächenbelastung |
|
Leermasse | 36.600 kg |
max. Startmasse | 75.800 kg |
Höchstgeschwindigkeit | 990 km/h |
Dienstgipfelhöhe | 12.800 m |
Reichweite | ca. 5.800 km |
Triebwerke | zwei Mikulin AM-3M-Strahltriebwerke mit 93,2 kN Schub |
Die Tu-16 ist je nach Version mit bis zu sieben 23-mm-Maschinenkanonen Afanasjew-Makarow AM-23 bewaffnet. Jeweils zwei davon befinden sich in einer Hecklafette im Heckstand sowie in den beiden abgeflachten ferngelenkten Waffentürmen auf dem Rumpf hinter dem Cockpit und unter dem Rumpf vor dem Hecksporn. Diese Maschinenkanonen können entweder vom Radar am Heckstand oder manuell durch die Schützen gelenkt werden. Dem Bordschützen für den unteren Waffenturm stehen zwei seitliche Beobachtungskuppeln am Rumpfheck zur Verfügung. Der Bordschütze für den oberen Waffenturm sitzt entgegen der Flugrichtung hinter den Piloten und kann seinen Schießbereich durch eine Beobachtungskuppel vor dem Waffenturm einsehen. Eine siebente Bordkanone ist bei einigen Badger-Versionen starr in Flugrichtung auf der rechten Seite der Bugkanzel eingebaut und wird vom Piloten bedient.
Spätere Varianten wurden mit dem elektronischen Störsendersystem SPS-100 „Reseda“ ausgestattet. Dieses wurde anstelle des Heckstandes eingebaut.