Itō Kiyoshi et McKean, Henry Pratt jun., Diffusion processes and their sample paths, Springer-Verlag, , xvii + 321 (zbMATH0127.09503).
McKean, Henry Pratt jun., Stochastic integrals, Academic Press, , xiii + 140 (zbMATH0191.46603).
Dym, Harry et McKean, Henry Pratt jun., Fourier series and integrals, Academic Press, coll. « Probability and Mathematical Statistics » (no 14), , x + 295 (zbMATH0242.42001)[5].
Dym, Harry et McKean, Henry Pratt jun., Gaussian processes, function theory, and the inverse spectral problem, Academic Press, coll. « Probability and Mathematical Statistics » (no 31), , xi + 333 (zbMATH0327.60029)[6].
McKean, Henry Pratt jun. et Moll, Victor, Elliptic curves. Function theory, geometry, arithmetic, Cambridge University Press, , xiii + 280 (zbMATH0895.11002).
McKean, Henry Pratt jun., Probability. The classical limit theoremsic, Cambridge University Press, , xxi + 464 (ISBN978-1-107-05321-2, zbMATH1327.60012).
Certains de ces livres ont aussi fait l'objet de rééditions.
Articles
McKean, Henry Pratt, « Elementary solutions for certain parabolic partial differential equations », Trans. Amer. Math. Soc., vol. 82, no 2, , p. 519–548 (DOI10.1090/S0002-9947-1956-0087012-3, MR0087012)
Levinson, N. et McKean, Henry Pratt, « Weighted trigonometrical approximation on with application to the germ field of a stationary Gaussian process », Bull. Amer. Math. Soc., vol. 70, , p. 128–129 (DOI10.1090/S0002-9904-1964-11049-1)
McKean, H. P., « A simple model of the derivation of fluid mechanics from the Boltzmann equation », Bull. Amer. Math. Soc., vol. 75, , p. 1–10 (DOI10.1090/S0002-9904-1969-12128-2, MR0235792)
McKean, Henry Pratt et Trubowitz, E., « Hill's surfaces and their theta functions », Bull. Amer. Math. Soc., vol. 84, no 6, , p. 1042–1085 (DOI10.1090/S0002-9904-1978-14542-X)
↑McKean, H. P. et van Moerbeke, P., « The spectrum of Hill’s equation », Invent. Math., vol. 30, , p. 217-274 (zbMATH0319.34024).
↑McKean, H. P. jun. et Singer, I. M., « Curvature and the eigenvalues of the Laplacian », J. Differ. Geom., vol. 1, no 1, , p. 43-69 (zbMATH0198.44301).
↑Sarason, Donald, « Review of Gaussian processes, function theory, and the inverse spectral problem by H. Dym and H. P. McKean », Bull. Amer. Math. Soc., vol. 84, , p. 260–262 (DOI10.1090/S0002-9904-1978-14467-X)