Les microcontrôleurs PIC (ou PICmicro dans la terminologie du fabricant) forment une famille de microcontrôleurs de la société Microchip. Ces microcontrôleurs sont dérivés du PIC1650 développé à l'origine par la division microélectronique de General Instrument.
Le nom PIC n'est pas officiellement un acronyme, bien que la traduction en « Peripheral Interface Controller » (« contrôleur d'interface périphérique ») soit généralement admise. Cependant, à l'époque du développement du PIC1650 par General Instrument, PIC était un acronyme de « Programmable Intelligent Computer » ou « Programmable Integrated Circuit ».
Un microcontrôleur PIC est une unité de traitement et d’exécution de l'information à laquelle on a ajouté des périphériques internes permettant de réaliser des montages sans nécessiter l’ajout de composants annexes. Un microcontrôleur PIC peut donc fonctionner de façon autonome après programmation.
Les PIC intègrent une mémoire programme non volatile (FLASH), une mémoire de données volatile, une mémoire de donnée non volatile (E2PROM), des ports d'entrée-sortie (numériques, analogiques, MLI, UART, bus I2C, Timers, SPI, etc.), et même une horloge, bien que des bases de temps externes puissent être employées. Certains modèles disposent de ports et unités de traitement de l'USB et Ethernet.
Les PIC se conforment à l'architecture Harvard : ils possèdent une mémoire de programme et une mémoire de données séparées. La plupart des instructions occupent un mot de la mémoire de programme. La taille de ces mots dépend du modèle de PIC, tandis que la mémoire de données est organisée en octets.
Les PIC sont des processeurs dits RISC, c'est-à-dire processeur à jeu d’instruction réduit. Plus on réduit le nombre d’instructions, plus facile et plus rapide en est le décodage, et plus vite le composant fonctionne. Cependant, il faut plus d'instructions pour réaliser une opération complexe.
Le nombre de cycles d'horloge (Tosc) par cycle instruction (Tcy) dépend de l'architecture du PIC : Tcy=4*Tosc (8 bits), Tcy=2*Tosc (16 bits), Tcy=Tosc (32 bits).
Comme la plupart des instructions sont exécutées en un seul cycle, hormis les sauts, cela donne une puissance de l’ordre de 1 MIPS par MHz (1 million d'instructions par seconde).
Les PIC peuvent être cadencés à 20/32 MHz (séries PIC12/PIC16/PIC16F1), 40/48/64 MHz (série PIC18/PIC18"J"/PIC18"K"), 80/100 (PIC32MX), 120/200 (PIC32MZ).
Les PIC disposent de plusieurs technologies de mémoire de programme : flash, ROM, EPROM, EEPROM, UVPROM. Certains PIC (PIC18/24/32 et dsPIC33) permettent l'accès à la FLASH et à la RAM externe.
La programmation du PIC peut se faire de différentes façons :
Le débogage logiciel peut être réalisé de façon logicielle (simulateur) ou hardware (débogueur externe). Dans les deux cas, un environnement tel que MPLAB X peut être utilisé.
Plusieurs solutions existent pour déboguer un programme écrit pour un microcontrôleur PIC :
Les modèles de PIC courants sont repérés par une référence de la forme :
Par exemple, le PIC18LF4682-I/P est un microcontrôleur de la famille PIC18, basse tension (L), à mémoire flash (F), modèle 4682, gamme de température industrielle (I) et boîtier DIL40.
Ce sont des composants récents. Ils ont comme particularités d'être extrêmement petits (pour donner une idée, existe en boîtier SOT-23 à 6 broches de moins de 3 × 3 mm), simples et économiques.
Les PIC de la famille 16C ou 16F sont des composants de milieu de gamme. C'est la famille la plus riche en termes de dérivés.
La Famille 16F dispose dorénavant de trois sous-familles :
PIC16F1xxx : il s'agit d'une nouvelle famille (2009) créée spécifiquement pour permettre l'extension de la mémoire FLASH, de la mémoire RAM et l'ajout de périphériques, tout en gardant la compatibilité avec les cœurs baseline et middle-range. L'ajout d'une quinzaine d'instructions orientée pour les compilateurs C permettent de diminuer de façon significative la taille du code généré (jusqu'à 40 % de moins que le cœur PIC16 Middle-range).
Cette famille a un jeu d'instruction plus complet puisqu'il comprend quelque 75 instructions. Cette palette d'instructions étendue lui permet de faire fonctionner du code C compilé de manière nettement plus efficace que les familles précédentes.
Sur les dernières versions (sous-famille « K »), on peut les utiliser avec un quartz fonctionnant jusqu'à 64 MHz (16 MIPS).
Cette famille propose une multitude de dérivés intégrant l'USB, ETHERNET (MAC+PHY), le CAN, le CAN FD, le contrôleur LCD des canaux de MLI dédiés au contrôle moteur.
Cette famille est sortie en 2004, 2011 pour les PIC24E. L'utilisation du C / C++ y est plus efficace que sur les familles précédentes, du fait de l'utilisation du format 16 bits, du jeu d'instruction prévu en conséquence, et de la plus grande souplesse de la pile mappée dans la RAM.
Quelques caractéristiques à remarquer :
Introduits en , les PIC32MX sont des microcontrôleurs 32 bits fonctionnant jusqu'à 100 MHz pour certains dérivés. Ils sont basés sur le cœur MIPS32 M4K (Architecture MIPS). L'architecture interne des PIC32 est basée sur le Bus Matrix (128 bits) permettant d'avoir jusqu'à 4 transactions simultanées. Les canaux de DMA peuvent donc fonctionner en parallèle de l'exécution des instructions.
Ce cœur comporte des instructions 32 bits et aussi 16 bits (MIPS16e) qui peuvent être mélangées à volonté pour réduire la taille du code.
Une nouvelle sous-famille () intègre maintenant l'ETHERNET, l'USB HOST et 2 × contrôleurs CAN avec une FLASH de 512 Kio et une RAM de 128 Kio lui permettant de faire tourner simultanément plusieurs protocoles (USB / TCP/IP / OSEK).
Introduits en , les PIC32MZ sont des microcontrôleurs 32 bits fonctionnant jusqu'à 250 MHz. Ils sont basés sur le cœur MIPS32 M14K (Architecture MIPS).
La mémoire FLASH a été étendue jusqu'à 2 Mio et la mémoire RAM jusqu'à 512 Kio.
La plateforme logicielle gratuite MPLAB Harmony gère désormais tous les PIC32 et intègre toutes les librairies : TCP/IP, USB, File system, graphics, WiFi, Bluetooth.
Le dsPIC (digital signal PICs) est adapté aux applications de traitement du signal et peut donc remplacer un DSP de type 16 bits entier.
L'unité DSP est accessible avec des instructions supplémentaires. Elle permet par exemple de faire du contrôle vectoriel de moteur (transformées de Park et de Clarke), de la FFT 512 points, des filtres de type IIR/FIR. Microchip propose également des blocksets pour MATLAB Simulink permettant de générer du code pour tous les périphériques des dsPIC30 et dsPIC33.
En 2011, Microchip introduit les dsPIC33E qui ont notamment une puissance calcul pouvant aller jusqu'à 70 MIPS[2] (millions d'instructions par seconde).
En 2019, les nouveaux dsPIC33CH (double cœur) 200 MIPS et les dsPIC33CK (simple cœur) 100 MIPS permettent d'améliorer encore la performance tout en gardant la compatibilité. Grâce à la nouvelle unité de PWM, la résolution est désormais de 250 ps.
Une grande variété de technologies de boîtiers existent en fonction des familles : de 6 (SOT6) à 144 broches.