A számelméletben egy erősen bővelkedő szám olyan pozitív egész szám, aminek osztóinak összege nagyobb, mint bármely nála kisebb pozitív egész szám osztóinak összege.
Az erősen bővelkedő számokkal (és a természetes számok több hasonló csoportjával) elsőként S.S. Pillai foglalkozott 1943-ban.[1] Alaoglu és Erdős összegyűjtötték 104-ig az erősen bővelkedő számokat, és megmutatták, hogy az N számnál kisebb erősen bővelkedő számok száma log2 N körül van.
Formálisan, n természetes szám akkor és csak akkor erősen bővelkedő, ha minden természetes szám m < n-re,
ahol σ az osztóösszeg-függvényt jelöli. Az első néhány erősen bővelkedő szám a következő:
Az 5 például nem erősen bővelkedő szám, mivel σ(5) = 5+1 = 6 kisebb, mint a σ(4) = 4 + 2 + 1 = 7, ellenben 8 erősen bővelkedő szám, mivel σ(8) = 8 + 4 + 2 + 1 = 15, ami nagyobb az összes kisebb természetes számhoz tartozó σ értéknél.
Az erősen bővelkedő számok közül kizárólag az 1 és a 3 páratlan.[2]
Bár az első nyolc faktoriális erősen bővelkedő, ez nem minden faktoriálisra igaz. Például
de létezik nála kisebb szám nagyobb osztóösszeggel,
ezért 9! nem erősen bővelkedő szám.
Alaoglu és Erdős megfigyelte, hogy valamennyi szuperbővelkedő szám egyben erősen bővelkedő is, és feltették a kérdést, hogy vajon létezik-e végtelen sok erősen bővelkedő szám, ami nem szuperbővelkedő is egyben. A kérdést 1969-ben pozitívan döntötte el Jean-Louis Nicolas.[3]
A megtévesztő név ellenére az erősen bővelkedő számok nem feltétlenül bővelkedő számok. Az első hét erősen bővelkedő szám közül egyik se bővelkedő.
7200 a legnagyobb hatványteljes szám, ami erősen bővelkedő is; a nála nagyobb erősen bővelkedő számok mind rendelkeznek olyan prímtényezővel, ami csak egyszer osztja őket. Ezért a 7200 egyben a legnagyobb erősen bővelkedő szám, aminek páratlan az osztóösszege.[4]