AMPA-ընկալիչ (α-ամինո-3-հիդրօքսի-5-մեթիլ-4-իզոքսազոլպրոպիոնաթթու ընկալիչ, AMPAR), գլուտամինաթթվի իոնատրոպ ընկալիչ, որը փոխանցում է արագ գրգռող ազդանշանները՝ ողնաշարավորների նյարդային համակարգի սինապսներով։ Տվյալ ընկալիչը ակտիվանում է նաև գլուտամատի սինթետիկ անալոգով՝ АМРА ամինաթթվով, որտեղից և ստացել է իր անվանումը։ АМРА-ընկալիչները հայտնաբերվել են գլխուղեղի գրեթե բոլոր կառույցներում, նրանց համարում են նյարդային համակարգի ամենատարածված ընկալիչների տիպը։ Այս ընկալիչները իրենցից ներկայացնում են քառաչափ իոնական պոմպեր, որոնք կարող են կազմված լինել չորս տիպի ենթամիավորներից[1]։ АМРА-ընկալիչները կապված են մարդու կենտրոնական նյարդային համակարգի մի շարք հիվանդությունների հետ, ինչպիսիք են Մարտին-Բելի սինդրոմը, այդ պատճառով նրանց ուսումնասիրմանը մեծ ուշադրություն է դարձվում[2]։
Ընկալիչը հայտնաբերվել է Կոպենհագենի համալսարանի դեղաբանական բաժնի մի խումբ գիտնականների կողմից՝ Տագե Հոնորի գլխավորությամբ[3]։ Կանոնավոր քառանկյան տեսք ունեցող АМРА-ընկալիչը, որը կազմված է չորս GluR2 ենթամիավորներից, դարձավ առաջին գլուտամատային ընկալիչը, որը ստացան բյուրեղների տեսքով[4]։
АМРА-ընկալիչները բազմաքանակ և տարածված ընկալիչներ են կենտրոնական նյարդային համակարգում։ GluR1, GluR2 և GluR3 ենթամիավորումների մեծ կոնցետրացիա հայտնաբերվել է հիպոկամպում, առաջնային ուղեղի կեղևի արտաքին շերտում, երկարավուն ուղեղի հանգույցներում, նշաձև մարմնիկում և գլխուղեղի այլ հատվածներում։ GluR4 ենթամիավորումները գլխուղեղի մի շարք հատվածներում պարունակվում է ցածր կոնցետրացիայով, բայց ուղեղիկում, թալամուսում և երկարավուն ուղեղում նրա կոնցետրացիան մեծ է[5]։
Իմունոպրեցիպիտացիայի մեթոդով հաստատվել է, որ հիպոկամպի բրգաձև նեյրոններում արտազատվում է АМРА-ընկալիչները, որոնք կազմված են GluR2 ենթամիավորումներից՝ GluR1 և GluR3 հետ միասին։ Նեյրոնների որոշ ոչ մեծ պոպուլյացիաներում հանդիպում են հոմոմեր (այսինքն կազմված են միայն մեկ տիպի ենթամիավորներից) GluR1 ընկալիչներ։ Այդպիսի ընկալիչները զգալիորեն տարբերվում են այլ АМРА-ընկալիչներից իրենց իոնական թափանցելիությամբ[6]։
АМРА-ընկալիչների գեների էքսպրեսիան փոխվում է օնտոգենեզի ընթացքում։ GluR2 ենթամիավորը առնետի ուղեղում հայտնվում է սաղմնային զարգացման 16-րդ օրից, իսկ մնացած ենթամիավորները զարգանում են զգալի ուշ[5]։ Ինչպես նաև GluR2 ենթամիավորի հարաբերական քանակը կարող է փոխվել սինապսային ճկունության արդյունքում, նյարդային հյուսվածքի մեխանիկական վնասվածքներից և այլ գործոններից։
АМРА-ընկալիչներ նկատվում են քիմիական սինապսի և նախասինապսային, և հետսինապսային թաղանթներում, և քիչ քանակությամբ նեյրոնների պլազմատիկ թաղանթի ոչ սինապսային հատվածներում։ АМРА-ընկալիչների ընդհանուր քանակի 60-70 %-ը բջջում մշտապես գտնվում է էնդոպլազմային ցանցում[7]։ АМРА-ընկալիչները գտնվում են նաև նեյրոգլիայի բջիջներում, նրանք մասնակցում են ապոպտոզի պրոցեսին, որը առաջանում է գլուտամինատային թունավորումից[8]։ АМРА-ընկալիչների ակտիվացիան գլիայի բջիջներում բերում է NO-սինթազի Ca2+-կախյալ ակտիվացմանը և ցիկլիկ գուանոզինմոնոֆոսֆատի հետագա սիթեզը[9]։
Ենթամիավորների անվանման տեսակներ | Գեների տեղակայում մարդու քրոմոսոմներում |
Ամինաթթուների քանակը երկար սպլայս-ձևում |
---|---|---|
GluR1, GluRA, GRIA1, GluA1 | 5 q31.1 | 906 |
GluR2, GluRB, GRIA2, GluA2 | 4 q32-q33 | 901 |
GluR3, GluRC, GRIA3, GluA3 | X q25-q26 | 894 |
GluR4, GluRD, GRIA4, GluA4 | 11 q22 | 902 |
Ինչպես նշվեց վերևում, կառուցվածքով АМРА-ընկալիչը քառանկյուն է, որի մեջ կարող են մտնել 4 տիպի ենթամիավորներ (GluR1—GluR4)՝ տարբեր դասավորությամբ։ АМРА-ընկալիչների մեծամասնությունը համարվում է հետերոտետրամերներ, որոնք կազմված են «դիմերների դիմերով»․ յուրաքանչյուր երկրորդ դիմերի մեկ ենթամիավորը սովորաբար GluR2-ն է, իսկ մյուսը՝ GluR1, GluR3 կամ GluR4[11][12][13][14]։ АМРА-ընկալիչները, որոնց բաղադրության մեջ մտնում են GluR2 ենթամիավորները, որոնք Q/R-սայթում պարունակում են արգինին, համարվում են կալցիումի իոնների համար անթափանցելի, իսկ մյուսները թափանցելի են այդ իոնի համար[15]։
АМРА-ընկալիչների ենթամիավորները կազմված են չորս դոմենից (կառուցվածքա-ֆունկցիոնալ տեղամասերից)՝ ոչ բջջային N-ծայրային դոմենից (անգլ.՝ amino-terminal domain, ATD), արտաբջջային դոմենից, որը կապում է լիգանդները (անգլ.՝ ligand-binding domain, LBD), տրանսմեմբրանային դոմենից (անգլ.՝ transmembrane domain, TMD) և ներբջջային С-ծայրային դոմենից (անգլ.՝ carboxyl-terminal domain, CTD)։ Ենթամիավորումների քառանկյուն տեսքը ստացվում է լիգանդ-կապող, տրանսմեմբրանային և N-ծայրային դոմենների համապատասխան ենթամիավորների փոխազդեցության արդյունքում[16][17]։ Ընկալիչների հավաքագրումը տեղի է ունենում հատիկավոր էնդոպլազմային ցանցում[18], որտեղ հատուկ կառույցներ ապահովում են ենթամիավորների պտույտը և փոխադարձ դասավորությունը։ Ապացուցված է, որ էնդոպլազմային ցանցի ներսում տեղի է ունենում ընկալիչների կոնֆորմացիայի փոփոխություն, ինչը կախված է նրանց ֆունկցիոնալ ակտիվությունից՝ լիգանդի կապումից (գլուտամատ), ակտիվացմամբ, դեսենսիտիզացմամբ և այլն․ այսպիսի կոնֆորմացիոն փոփոխությունները կարող են ազդել դեպի արտաքին թաղանթ ընկալիչների տեղափոխման պրոցեսի վրա։ Բացի այդ, ընկալիչների տեղափոխման մեջ զգալի դեր խաղում են N-ծայրային դոմենը և նրա միավորները[18][19]. Кроме того, значительную роль в олигомеризации рецепторов и их транспорте играют N-концевые домены их субъединиц[20][21]։ Վերջնական ձևավորումից հետո АМРА-ընկալիչները ազատվում են ցիտոպլազմայի մեջ։
АМРА-ընկալիչի լիգանդ կապող դոմենը ձևավորվում է երկու արտաբջջային մասնիկներից, որոնց անվանում են S1 և S2[22]։ Այս երկու սեգմենտները ձևավորում են մի կառույց, որը հիշեցնում է չանչ, ընդ որում S1 սեգմենտը, որը գտնվում է N-ծայրի թաղանթային М1 սեգմենտի վրա, ձևավորում է նրա մի մասը, իսկ S2 սեգմենտը, որը տեղակայված է М3 և М4 մասնիկների միջև, ձևավորում է մյուսը։ Գլուտամատի կապման վայրը գտնվում է չանչի մեջ՝ երկու սեգմենտների միջև։ S1 սեգմենտների (որոնք պատկանում են տարբեր դոմենների) մակերևութային կապերը լրացուցիչ տեղ են ազատում այլ ալոստերիկ մոդուլյատորների կապման համար[4]։
Ընկալիչի ակտիվացիան սկսվում է կապող լիգանդի հետ ագոնիստի միացմամբ։ Գլուտամինաթթուն, АМРА-ն և նրանց հոմոլոգները պարունակում են կառույցներ, որոնք համապատասխանում են α-ամինո- и α-կարբօքսիլային խմբերին․ այս խմբերը միանում են ընկալչի որոշակի ամինաթթվային մնացորդի հետ։ Այնուհետև АМРА-ընկալիչի ակտիվացման պրոցեսում՝ լիգանդի մոլեկուլի միացման շնորհիվ, տեղի է ունենում լիգանդ-դոմենի տարածական կառուցվածքի փոփոխություն։ Ագոնիստի հետ միացումից հետո S1 և S2 սեգմենտները դառնում են ավելի նեղ, քան ընկալչի ազատ վիճակում։ S2 սեգմենտը տեղաշարժվում է և առաջ է բերում ամինաթթուների մնացորդների կարճ շղթաների կոնֆորմացիոն փոփոխություն, որոնք իրար են կապում լիգանդ-կապող և տրանսմեմբրանային դոմենները, տրանսմեմբրանային դոմենային թաղանթների М3 սեգմենտները, իրենց հերթին, ցրվում են, բջջային թաղանթում բացելով իոնական պոմպը)[23]։ S1 և S2 սեգմենտների միմյանց նկատմամբ տեղաշարժը տանում է լիգանդ-կապող և տրանսմեմբրանային դոմենների անկայուն վիճակի։ Մակրոմոլեկուլի կայունությունը կարող է վերականգնվել «չանչի» լիգանդի-կապման դոմենի հակադարձ բացման դեպքում, ինչը տեղի է ունենում իոնական պոմպի փակման դեպքում և տանում է լիգանդ-ընկալիչ համակարգի կապի քանդում։ Մակրոմոլեկուլի կայունության վերականգնման այլ եղանակ համարվում է ենթամիավորումների հպման մակերեսների (ձևավորում են դոմեն) կոնֆորմացիայի փոփոխությունը։ Կայունության դեպքում մակրոմոլեկուլը վերականգնվում է, լիգանդը մնում է կապված, սակայն իոնային պոմպը փակվում է։ ընկալչի այսպիսի վիճակը անվանում են «դեսենսիտացիոն»․ այս վիճակում գտնվելու ժամանակ ընկալիչը ակտիվ չէ (քանի որ իոնական պոմպը փակ է), բայց չի կարող նաև ակտիվանալ, քանի որ ագոնիստի միացման վայրը արդեն զբաղված է[24].։
Ենթամիավորների պրե-ի-ՌՆԹ-ների ալտերնատիվ սպլայսինգը կարող է տանել ընկալչի երկու նման թևերի առաջացման, որոնք կոչվում են ֆլիպ- և ֆլոպ-ձևեր։ Այս ձևերը ալոստերիկ մոդուլյատորների նկատմամբ ունեն տարբեր զգայունություն, ինչպես նաև նրանց մոտ տարբեր կերպ են ընթանում կոնֆորմացիոն փոփոխությունները՝ ընկալչի ակտիվացման, ինակտիվացման և դեսենսիտիզացիայի ժամանակ[25][26]։
АМРА-ընկալիչի յուրաքանչյուր ենթամիավորի առաջին 400-450 N-ծայրային ամինաթթվային մնացորդները (ինչպես բոլոր այլ գլուտամատային իոնոտրոպ ընկալիչներում) ձևավորում են N-ծայրային դոմենը։ Գլուտամատային իոնոտրոպ ընկալիչներում N-ծայրային դոմենի ամինաթթվային հաջորդականությամբ շատ նման է գլուտամատային մետաբոոտրոպ ընկալիչների լիգանդ-կապող դոմենին և բակտերիաների պերպլազմայի որոշ սպիտակուցներին։ Ենթադրվւոմ էր, N-ծայրային դոմենը ընկալիչների էվոլյուցիայի վաղ փուլերում նախատեսված էր էնդոֆեն լիգանդների կապման համար, բայց հետագայում կորցրեց այդ հատկությունը[27][28][29][30][31]։ Գենետիկական ինժեներիայի մեթոդների միջոցով ստեղծվել են АМРА-ընկալիչի մեծ քանակությամբ մուտանտ ենթամիավորներ, որոնց մոտ N-ծայրային դոմենը ամբողջությամբ բացակայում է։ Այդպիսի ենթամիավորները կարող են ձևավորել ամբողջությամբ գործող ընկալիչներ, սակայն հետագայում այս փորձերի շնորհիվ պարզվեց, որ N-ծայրային դոմենը կատարում է կարգավորիչ ֆունկցիա․ նրա բացակայությունը ազդում է իոնային պոմպի բացման հավանակության, ինակտիվացիայի արագության, դեսենսիտիզացիայի և այլ նկարագրերի վրա[20][21][32][33][34][35][36]։ Բացի այդ, N-ծայրային դոմենում հայտնաբերվել են այնպիսի կարգավորիչ մոլեկուլների կենտրոններ, ինչպիսիք են ֆենիլէթանոլամինը, իֆենպրոդիլը, ինչպես նաև պենտրակսինը[37][38]։
АМРА-ընկալիչի տրանսմեմբրանային դոմենը կազմված է չորս տրանսմեմբրանային սեգմենտներից՝ М1, М2, М3 և М4։ Հետազոտությունների սկզբում տրանսմեմբրանային դոմենի այսպիսի կառուցվածքը որոշակի տարակուսանքի մեջ գցեց․ եթե ամինաթթվային շղթան բջջային թաղանթը անցնում է զույգ քանակով, ապա նրա С-ծայրը և N-ծայրը պետք է գտնվեն թաղանթի միևնույն կողմում, բայց միևնույն ժամանակ մոլեկուլա-կենսաբանական մեթոդներով հաստատվել էր, որ ընկալչային ենթամիավորի С-ծայրային մասը գտնվում է բջջի ներսում, իսկ N-ծայրը՝ դրսում։ Հակադրությունը անհետացավ, երբ պարզվեց, որ М2 սեգմենտը չի անցնում թաղանթի մեջով, այլ ծռվում է և դուրս է գալիս ներբջջային մասում()[39]։
GluR2-ենթամիավորներ պարունակող АМРА-ընկալիչների իոն անցկացնելու հատկությունը կախված է այդ ենթամիավորումի ի-ՌՆԹ-ի հետտրանսկրիպցիոն ձևափոխումից․ կոդոնը, որը համապատասխանում է գլուտամինի ի-ՌՆԹ-ին (Q) (գտնվում է М2 (Q/R-սայթ) սեգմենտի ծալքի վերին սպիտակուցի վրա), կարող է փոխարինվել արգինինի (R) կոդոնով[40]։ Այս ձևափոխումը զգալի կերպով ազդում է ընկալչի պոմպով անցնող իոնային տրանսպորտի վրա․ АМРА-ընկալիչի Q-ձևը անց է կացնումի Са2+ իոնները և կարող է փակվել իոնային պոմպի բազմաամինային արգելակիչներով, իր հերթին R-ձևը գրեթե անթափանցելի է կալցիումի իոնների համար և զգայուն չէ ներբջջային բազմաամինային արգելակիչների նկատմամբ[41]։ АМРА-ընկալիչների ճնշող մեծամասնությունը նյարդային համակարգում R-ձևի են։
Ընկալչային քառանկյան կազմավորման ժամանակ М2 և М3 սեգմենտները առաջացնում են սեփական իոնային պոմպերը։ М2 սեգմենտը ձևավորում է նրա այն մասը, որը կազմում է բջջային թաղնթի ներքին մասը, М3 սեգմենտը այն, որը մտնում է արտաքին մասի կազմի մեջ, М1 սեգմենտը՝ գտնվելով իոնային պոմպի մեմբրանի հարթության արտաքին մակերեսին, ձևավորում է ընկլչի տրանսմեմբրանային դոմենի հատուկ պարագիծը, М4 սեգմենտը ձևավորում է հարևան ենթամիավորի М2 և М3 սեգմենտների մակերեսներին կոմպլեմենտար մակերես[4]։
АМРА-ընկալիչի С-ծայրային դոմենը համարվում է ամենաքիչ պահպանողական դոմենը․ նրա առաջնային կառուցվածքը տարբերվում է բոլոր այլ ենթամիավորներից։ Այս դոմենը պարունակում է արտաբջջային սպիտակուցների կապման մի շարք հատվածներ, որոնք կարգավորում են ընկալչի շարժումը բջջային թաղանթի վրա, նրանց իոնաթափանցելիությունը և այլ նկարագրերը[42]։ Բացի այդ, С-ծայրային դոմենի ենթամիավորների տարբեր տիպեր կարող են փոխազդել տարբեր ազդանշանային սպիտակուցների հետ՝ օրինակ, С-ծայրային դոմենի GluR1 ենթամիավորը փոխազդում է գուանոզինմոնոֆոսֆատ-կախյալ պրոտեինկինազի հետ[43], С-ծայրային դոմեն GluR4-ը՝ С պրոտեինկինազի հետ[44]։ Այսպիսի փոխազդեցությունը ապահովում է ընկալչի ակտիվացիան և ինակտիվացիան, մեմբրանային տրանսպորտը և ներբջջային պրոցեսների այլ պատասխան գործընթացները։
Ենթամիավորներ, որոնք ձևավորում են ընկալիչը |
Բացման հավանականությունը գլուտամատի ակտիվացումից հետո |
Բացի վիճակում մնալու միջին ժամանակը (մվ) | էլեկտաթափանցելիություն |
---|---|---|---|
GluR1-flip | 0,4-1,0[45][46] | 0,2-0,9[45] | 8, 15, 23, 31[45][47][48] |
GluR2-flipQ | 0,61[49] | 0,32; 1,47[50] | 7, 15, 24, 36[50][51] |
GluR3-flip | 0,82[52] | ||
GluR4-flip | 0,77[46] | 0,14; 3,3[53] | 9, 20, 31, 45[53][54] |
АМРА-ընկալիչների ուսումնասիրությունները, որոնք ներմուծվել էին արհեստական հետերոգեն համակարգեր (գորտի ձվաբջիջ, ոչ նեյրոնային բջջային կուլտուրաներ), ցույց են տվել, որ նրանց բնութագրերը տարբերվում են այն ընկալիչներից, որոնք ուսումնասիրվել են կենդանի նյարդային բջիջներում։ Այդ անհամապատասխանությունները վկայում են կարգավորող կոմպոնենտի առկայության մասին, որը բնորոշ է միայն նյարդային հյուսվածքին։ Մեծ տարբերությունների պատճառները պարզ դարձան տրանսմեմբրանային սպիտակուցների ուսումնասիրումից հետո, որոնք կարգավորում են АМРА-ընկալիչների ակտիվությունը (անգլ.՝ transmembrane AMPA receptor regulatory Proteins, TARPs)։ TARP-ը բջջային թաղանթի սպիտակուցներն են՝ չորս տրանսմեմբրանային դոմեններից կազմված, որոնք փոխազդում են տարբեր ներբջջային սպիտակուցների հետ[54][55][56]. С каждым тетрамером рецептора связаны два или четыре регуляторных белка, которые взаимодействуют с различными внутриклеточными белками[57][58]։ TARP-ի առավել տարածված տեսակները (γ-2, γ-3, γ-4 и γ-8) փոխազդում են բոլոր չորս տիպի ենթամիավորների հետ։ TARP γ-2 (ստարագազին) առաջին անգամ հայտնաբերվել է ուղեղիկում որպես սպիտակուց, որը անհրաժեշտ է АМРА-ընկալիչը էնդոպլազմային ցանցից բջջաթաղանթ տեղափոխելու համար[59]։ Տրանսպորտային ֆունկիցայի հետ մեկտեղ, տրանսմեմբրանային կարգավորիչ գեները՝ կապվելով АМРА-ընկալիչների հետ, մեծացնում են իոնական պոմպի թափանցելիությունը և նրա բացման հավանականությունը, դանդաղեցնում է ինակտիվացիան և դեսենսիտիզացիան[54][60][61]։
АМРА-ընկալիչների հիմնական էնդոգենային լիգանդը համարվում է գլուտամատը, որը միանում է չանչանման կառույցի հետ՝ լիգանդ կապող դոմենի յուրաքանչյուր ենթամիավորում, այդ կերպ, ընկալիչը ունի գլուտամատի կապման 4 տեղամաս։ Իոնական պոմպի բացումը տեղի է ունենում, երբ ագոնիստը միանում է 2 տեղամասում, բայց մեծ քանակությամբ տեղամասերի հետ կապումը մեծացնում է պոմպի թափանցելիությունը և նրա բաց մնալու միջին ժամանակը։ Գլուտամատի երկու կարբօքսիլային և մեկ ամինախումբը ձևավորում են ինը ջրածնական կապեր՝ ընկալչի լիգանդ կապող դոմենի տարբեր ամինաթթվային մնացորդների միջև[62]։
Գլուտամատի հետ մեկտեղ, АМРА-ընկալիչը կարող է ակտիվանալ այլ բնական և արհեստական լիգանդներով՝ իբոտենաթթու, վիլարդին, ինչպես նաև մի շարք ածանցյալներով, այդ թվում АМРА ածանցյալներով։ Այս ագոնիստներից մի քանիսը ընտրողաբար են GluR1/GluR2 և GluR3/GluR4 ենթամիավորների նկատմամբ՝ օրինակ, Сl-НІВО (իբոտենաթթվի ածանցյալ) ակտիվացնում է GluR1 և GluR2-ը 275 և 1600 անգամ ավելի փոքր կոնցետրացիայով, քան GluR3 և GluR4 համապատասխանաբար։ Սակայն, չնայած ֆարմակոլոգիական միջոցներով հնարավոր է տարբերակել GluR1/GluR2 և GluR3/GluR4 ազդեցությունը, 2011 թվականին չեն նկարագրվել լիգանդներ, որոնք թույլ կտային առանձնացնել ընկալիչի տարբեր ենթամիավորումների ազդեցությունը։
Ագոնիստ | GluR1 | GluR2 | GluR3 | GluR4 |
---|---|---|---|---|
L-գլուտամատ | 3,4-22[63][64][65][66] | 6.2-296[63][67][68] | 1.3-35[63][64][65] | 560[69] |
АМРА | 1,3-8,7[65][70][71] | 66[68] | 1,4-130[65][70][71] | 1,3[71] |
Կաինաթթու | 32-34[66][70] | 130-170[72] | 31-36[65][70] | |
Վիլարդին | 11,5[73] | 6.3[50] | ||
F-Վիլարդին | 0.47[73] | 0.2-0.5[50][74] | 20,9[74] | 11,9[74] |
Br-Վիլարդին | 2,8[73] | 0,84[50] | ||
І-Վիլարդին | 33,6[73] | 1,5[50] | ||
Br-НІВО | 14[63] | 5,4[63] | 202[63] | 39[63] |
Cl-НІВО | 4,7[75] | 1.7[75] | 2700[75] | 1300[75] |
(S)-CPW399 | 24,9[76] | 13.9[76] | 224[76] | 34.3[76] |
(S)-ATPA | 22[77] | 7.9[77] | 7.6[77] | |
ACPA | 1,1-11[65][78] | 15[78] | 0,1-5[65][78] | 1,1[78] |
(S)-4-AHCP | 4,5[79] | 7.2[79] | 15[79] | |
(S)-Thio-ATPA | 5,2[80] | 13-40[80] | 32[80] | 20[80] |
2-Et-Tet-AMPA | 42[81] | 52[81] | 18[81] | 4[81] |
(S)-2-Me-Tet-AMPA | 0,16[71] | 3,4[68] | 0,014[71] | 0,009[71] |
SYM2081 | 132[64] | 453[64] | ||
Դոմոյաթթու | 1,3[66] | 0,97[64] | 21[64] |
АМРА-ընկալիչների մրցակցային անտագոնիստները սովորաբար պարունակում են α-ամինախումբ, որը միացած է հետերոցիկլիկ մասի հետ[82]։ Ընկալչի առաջին ուսումնասիրված անտագոնիստները կվինոքսալինդիոններն են (en:CNQX, DNQX, NBQX)։ Հետաքրքիր է, որ տրանսմեմբրանային սպիտակուցների առկայության դեպքում, CNQX և DNQX (բայց ոչ NBQX) դառնում են թույլ մասնավոր ագոնիստներ։ CNQX և DNQX առաջ են բերում կապող լիգանդի դոմենի «չանչի» մասնակի փակում, ինչը համապատասխանում է մասնակի ագոնիստների գործունեությանը[62]։ Ըստ գոյություն ունեցող հիպոթեզի, տրանսմեմբրանային կարգավորիչ սպիտակուցները ազդում են «չանչի» բացման աստիճանի վրա և այն սարքում բավարար՝ իոնական պոմպի բացման ինդուկցման համար[83]։ Ի տարբերություն կվինոքսալինդիոնների, NS1209 և UВР282 միացությունները կայունացնում են S1-S2 կոմպլեքսը առավել բաց վիճակում, քան բնորոշ է լիգանդի հետ չմիացած ընկալիչին։
Антагонист | GluR1 | GluR2 | GluR3 | GluR4 |
---|---|---|---|---|
CNQX | 0,6[66] | 0,18[84] | 2,11[85] | |
DNQX | 0,25[86] | 0,45[84] | 1,66[85] | 0,19-0,49[86] |
NBQX | 0,4[87] | 0,59[78] | 0,31-0,63[78][85] | 0,1[87] |
ATPO | 38[78] | 65[78] | 110[78] | 150[78] |
YM90K | 1,96[85] | |||
NS1209 | 0,12[88] | 0.13[88] | 0.11[88] | 0.06[88] |
Կինուրենաթթու | 1900[89] | |||
LY293558 | 9,2[90] | 0,4-3,2[90][91] | 32[92] | 51[90] |
UBP310 | >100[93] | |||
ACET | >100[93] |
АМРА-ընկալիչների ոչ մրցակցային անտագոնիստների հիմնական դասը համարվում են 2,3-բենզոդիազեպինները (օրինակ, GYKI-53655), հիդրոֆտալազինները և տետրահիդրոիզոկինալները[94].։ Ի տարբերություն CNQX և DNQX, GYKI-53655 մնում է АМРА-ընկալիչի ակտիվ անտագոնիստ և տրանսմեմբրանային կարգավորիչ սպիտակուցների առկայության, ընդ որում անագոնիստի ակտիվությունը մեծանում է[95]։ Ապացուցված է, որ GYKI-53655 միառժամանակ կապվում է այն տեղամասերի հետ, որոնք կապում են S2-ը М4-ի և S1-ը М1-ի հետ[96]։ Վերջին տեղամասը համարվում է իոնական պոմպի բացման կրիտիկական կետը[4]։
Անտագոնիստ | GluR1 | GluR2 | GluR3 | GluR4 |
---|---|---|---|---|
GYKI 52466 | 18-117[97][98] | 34[85] | 22-66[97][98] | |
GYKI 53405 | 24[97] | 28[97] | ||
GYKI 53655 | 6[97] | 5[97] | ||
LY 300164 | 21[99] | 18[99] | 19[99] | 18[99] |
CP-465,022 | 0,5[96] | 0,5[96] | 0,3[96] |
АМРА-ընկալիչների անմրցակցային անտագոնիստները, ինչպիսիք են ֆիլանտոտոքսինները[100] կամ պոմպերի արգելակիչները, իրենց գործունեության համար պահանջում են իոնական պոմպի բացված վիճակում նախնական տեղափոխման, պոմպի մեջ սպեցիֆիկ տեղամասի հետ կապվելուց հետո, այս նյութերը մեխանիկորեն արգելափակում են իոնների ներթափանցումը[101]։ Այսպիսով, այս անտագոնիստների ազդեցությունը կախված է ուսումնասիրվող հյուսվածքի ընկալիչի նախնական բացման աստիճանից։ Իր հերթին, ընկալիչի ռեակտիվացիան՝ նրանց միացումից հետո, տեղի է ունենում միայն անտագոնիստի գործունեության միջոցով, որը կարող է առաջ բերել իոնական պոմպի բացում, այդ պատճառով ընկալիչների գործունեության վերականգնումը այդպիսի անտագոնիստների ազդեցությունից հետո, որպես կանոն, ավելի դանդաղ է, քան նախորդ դասերի անտագոնիստների մոտ։
Անտագոնիստ | GluR1 | GluR2 | GluR3 | GluR4 |
---|---|---|---|---|
Արքիոտոքսին 636 | 0,35-3,4[102][103] | Н. Д.[102] | 0,23[102] | 0,43[102] |
Տոքսին ջորո | 0,04[104] | Н. Д.[104] | 0,03[104] | |
Ֆիլանտոտոքսին 433 | 0,8[105] | |||
Ֆիլանտոտոքսին 343 | 2,8[103] | |||
Ֆիլանտոտոքսին 56 | 3,3pM[106] | |||
Ֆիլանտոտոքսին 74 | 2,8[106] | |||
IEM-1460 | 1,6[107] | Н. Д.[108] | 1,6[107] | |
IEM-1754 | 6,0[107] | 6,0[107] |
Ալոստերիկ մոդուլյատորներ անվանում են այն նյութերին, որոնք փոփոխում են ընկալիչի ակտիվությունը՝ ինակտիվացիայի և դեսենսիտիզացիայի պրոցեսների փոփոխության միջոցով[109]։ Կապող լիգանդի դոմենի միջոցով ագոնիստի կապումը բերում է ընկալիչում լարվածության առաջացման, որոնք կարող են վերացվել երկու եղանակով՝ իոնային պոմպի բացմամբ (ռեցեպտորի ակտիվացում), կամ էլ մոլեկուլի կոնֆորմացիայի փոփոխությունը այնպես, որտեղ պոմպը բաց է, սակայն լարվածությունը բացակայում է (ընկալիչի դեսենսիտիզացիա)։ Առաջին դեպքում լիգանդ-ընկալչային համակարգի տարաբաժանումից հետո պոմպը փակվում է, իսկ ընկալիչը անցնում է չլարված վիճակի (անջատում)։ АМРА-ընկալիչի դրական մոդուլյատորների կապումը (օրինակ՝ պիրացետամ[110]) լիգանդ-կապվող դոմենի հետ բերում է ընկլիչի չլարված վիճակի փոխանցման էներգիայի բարձրացման՝ ագոնիստի հետ կապվելուց հետո։ Այսպիսով, մոդուլյատորները կասեցնում են ընկալիչի դեսենսիտիզացիան։ Որոշ մոդուլյատորներ նույնպես կարող են դանդաղեցնել կամ արագացնել ագոնիստ-ընկալիչ համակարգի տարանջատումը, այդպիսով տեղի է ունենում ինակտիվացիայի կարգավորում։
Գլխավոր պարամետրը, որոնք առանձնացնում են ալոստերիկ մոդուլյատորներին, համարվում է նրանց աշխատանքի մեխանիզմը։ Մասնավորապես, անիրացետամը դանդաղեցնում է ինակտիվացիայի պրոցեսը, սակայն չի ազդում ագոնիստների ուժի վրա, РЕРА-ն ուժեղացնում է АМРА-ընկալիչի գործունեությունը, փոքրացնում է դեսենսիտիզացիան, բայց չի ազդում ինակտիվացիայի վրա, ցիկլոտիազիդը մեծացնում է ագոնիստների խնամակցությունը[111]։ Իր հերթին, LY404187 միացությունը կայունացնում է բաց վիճակում գտնվող АМРА-ընկալիչը՝ անտագոնիստի հետ նրա միացումից հետո և չի ազդում նրա դեսենսիտիզացիա արագության վրա։ Բացի այդ, այս միացությունը, հավանաբար, թույլ է տալիս դեսենսիտիզացված ընկալիչներին անցնել բացված վիճակի կամ անմիջապես, կամ էլ միջանկյալ դեսենսիտիզացիայից և/կամ փակ կոնֆորմացիայից հետո[112]։ Որոշ միացություններ (օրինակ՝ СХ614) միառժամանակ կատարում է և դեսենսիտիզացիա, և ինակտիվացիա՝ դեռևս անհայտ ճանապարհով[113]։ Ալոստերիկ մոդուլյատորների ուժը կարող է կախված լինել ընկալիչի սպլայս տեսակներից, որոնց հետ այն փոխազդում է։ Օրինակ, ցիկլոտիազիդ գրեթե ամբողջությամբ կասեցնում է ընկալչի ֆլիպ-տեսակի դեսենսիտիզացիան, բայց ֆլոպ-տեսակի դեպքում համարվում է ընդամենը չափավոր ակտիվ նյութ[52]։
Ակտիվացիայի և ինակտիվացիայի արագությունը համարվում է ընկալչի գլխավոր բնութագիրը սինապսների ֆիզիոլոգիայի, սինապտիկ ճկունության և նյարդային իմպուլսների առաջացման մեջ։ Ակտիվացիայի և ինակտիվացիայի բնութագրերը տարբերվում են կախված ընկալիչը կազմող ենթամիավորների, նրանց սպլայս-տեսակից, կարգավորիչ սպիտակուցների առկայությունից և այլ գործոններից։ Այլ գլուտամատային իոնոտրոպ ընկալիչների (NMDA-ընկալիչներ, կաինատային ընկալիչներ) հետ համեմատած АМРА-ընկալիչները բնութագրվում են արագ ակտիվացիայով, ինակտիվացիայով և դեսենսիտիզացիայով։ Սա թույլ է տալիս կարգավորել թաղանթային գծերը՝ մեծ ժամանակահատվածում, միլիվարկյանների ընթացքում փոփոխելով նյարդային ազդանշանների բնութագրերը[114]։
Ենթամիավորներ, որոնք կազմում են ընկալիչը |
-ինակտիվացիա | -դեսենսիտիզացիա | -վերականգնում |
---|---|---|---|
GluR1-flip | 0,7-1,2[25][26][115][116] | 2,5-4,1[25][26][115][116][117] | 111-147[26][115][118] |
GluR1-flop | 0,86-1,3[25][26][115][116][119] | 3,2-4,2[25][26][115][116][117][119] | 147-155[26][115][119] |
GluR2-flipQ | 0,62-1,1[49][116] | 5,9-9,9[49][116][117] | 11,7[49] |
GluR2-flopQ | 0,54-0,9[49][116] | 1,2-1,9[49][116][117] | 31,3[49] |
GluR3-flip | 0,56[52] | 3,0-5,1[25][52][117][120] | 15-70[52][121] |
GluR3-flop | 0,63-1,05[52][119] | 1,1-2,8[25][52][116][117][119][120] | 55-142[52][108][120] |
GluR4-flip | 0,6[25] | 3,6-5,1[25][117] | 6-21[118][121] |
GluR4-flop | 0,6[25] | 0,9[25][117] | 31-43[121] |
GluR1-flip/GluR2-flip | 5,1[25] | 28-67[25] | |
GluR3-flip/GluR2-flip | 4,9[25] | 15-26[25] |
Սինապսային ճկունությունը դա սինապսի ուժգնության փոփոխումն է պատասխան իր սեփական ակտիվության կամ այլ ազդանշանների առկայության։ Երկարաժամկետ սինապսային պոտենցիացիան և սինապսային երկար ճնշումը համարվում է սինապսային ճկունության հայտնի դրսևորումներ, որոնք ավանդաբար կապում են հիշողության և մոռացության մեխանիզմների հետ։ АМРА-ընկալիչները կարևոր դեր են խաղում այս երկու պրոցեսներում։
Երկարաժամկետ սինապսային պոտենցացիան դա երկու նեյրոնների միջև սինապսային փոխանցման ոժեղացումն է, որը կատարվում է սինապսի կարճատև ակտիվացումից հետո և կարող է պահպանվել, ծայրահեղ դեպքում, մինչև մի քանի ժամ։ Գլուտամատային սինապսներում երկարաժամկետ սինապսային պոտենցացիան կախված է ինչպես նախասինապսային (գլուտամատի արտազատում), այնպես էլ հետսինապսային (գլուտամատի ընկալիչների քանակի փոփոխություն) թաղանթներից։ Երկարաժամկետ պոտենցացիան համարվում է հիշողության ձևավորման և կառավարման մեխանիզմներից մեկը։ Ապացուցված է, որ АМРА-ընկալիչները կարևոր դեր են խաղում երկարաժամկետ սինապսային պոտենցացիայի առաջացման մեջ և նրանց կոնցետրացիան սինապսային հատվածում մեծանում է[122]։
АМРА-ընկալիչների դերը երկարաժամկետ սինապսային պոտենցացիայի առաջացման մեջ կայանում է հետևյալում։ Գլուտամատը, որը արտազատվում է նախասինապսային նեյրոնից, կապվում է մի քանի ընկալիչների հետ, որոնք ունեն իոնական պոմպեր, մասնավորապես АМРА և NMDA ընկալիչների հետ։ Լիգանդի հետ կապումը բերում է АМРА-ընկալիչների պոմպերի բացում, որոնք անց են կացնում նատրիումի իոնները դեպի բջիջ, որը տանում է բջջաթաղանթի ապաբևեռացման։ Մյուս կողմից, NMDA-ընկալիչը երկարաժամկետ սինապսային պոտենցացիայի սկզբում չեն բացվում, քանի որ նրանց իոնական պոմպերը մեմբրանային պոտենցիալի նորմալ արժեքների դեպքում արգելափակված են մագնեզիումի իոններով։ Բայց АМРА-ընկալիչների միջով նատրիումի իոնների թափանցման շնորհիվ մեմբրանային պոտենցիալը իջնում է այնքան, որ դա բավարար է NMDA-ընկալիչներից մագնեզիումի իոնները անջատելու և իոնական պոմպերը բացելու համար։ Ի տարբերություն АМРА-ընկալիչների, NMDA-ընկալիչները անց են կացնում ոչ միայն նատրիումի, այլ նաև կալցիումի իոնները։ Կալցիումը, որը թափանցում է բջիջ, միջնորդում է АМРА-ընկալիչների ազդեցությունը՝ մասնավորապես, այն տանում է կալմոդուլին-կախյալ պրոտեինկինազ II (CaMKII) ֆերմենտի ֆոսֆորիլացմանը, ինչը տանում է АМРА-ընկալիչների ենթամիավորումների ֆոսֆորիլացման և մեծացնում է իոնական պոմպերի թափանցելիությունը։ АМРА-ընկալիչների պոմպերի թափանցելիության մեծացումը տանում է դեպի բջիջ նատրիումի ակտիվ ներհոսքի, այդպիսով իրականացնելով դրական հետադարձ կապը։
Կալմոդուլին-կախյալ պրոտեինկինազ II-ը ունակ է իրականացնել АМРА-ընկալիչների տեղափոխումը դեպի հետսինապսային թաղանթ՝ մի քանի ուղիներով։ Առաջին հերթին, այն ուղակիորեն ֆոսֆորիլացնում է սինապս-զուգորդված 97 սպիտակուցը (անգլ.՝ synaptic-associated protein 97, SAP97)[123], որը միոզին-VI-ի հետ միասին միանում է АМРА-ընկալիչի С-ծայրային դոմենի հետ։ Կալմոդուլին-կախյալ պրոտեինկինազ II-ի միջոցով ֆոսֆորիլացումից հետո կոմպլեքսը տեղափոխվում է նախասինապսային թաղանթ[124]։ Երկրորդ, հնարավոր ակտիվացում МАРК-կախյալ ուղով։ Այդ դեպքում կալմոդուլին-կախյալ պրոտեինկինազ II-ը ակտիվացնում է Ras սպիտակուցները, որոնք իրենց հերթին ակտիվացնում են МАРК p42/44 (միտոգեն-ակտիվացվող պրոտեինկինազներ), ինչը տանում է АМРА-ընկալիչի տեղափոխման և սինապսային թաղանթում ամրացմանը[125]։
АМРА-ընկալիչի CaMKII- կամ MAPK-կախյալ ուղիներով բջջաթաղանթի հետսինապսային հատված ընկնելուց հետո, ընկալիչները շարժվում են դեպի հետսինապսային կարծրուկ։ Այդ պրոցեսի հնարավոր մեխանիզմներից մեկը համարվում է АМРА-ընկալիչի հորիզոնական տեղափոխումը հետսինապսային թաղանթից դեպի հետսինապսային կարծրուկ երկարաժամկետ պոտենցիացիայի ժամանակ[126]։ Տրանսպորտի այլ հնարավոր տարբերակը դա ընկալիչների գրավումն է ոչ սինապսային տեղամասերում և դրանց տեղափոխումը դեպի սինապս՝ բջիջների ներառուկներ[127]։ Երկարաժամկետ պոտենցիացիայի ընթացքում տեղի են ունենում այս երկու նկարագրված գործընթացները, սակայն միայն հորիզոնական տեղափոխումն է բջջապատում մեծացնում ընկալիչների կոնցետրացիան։ Ներառուկային տրանսպորտը, իր հերթին, ապահովում է АМРА-ընկալիչների ներհոսքը դեպի շուրջսինապսային տարածք, որտեղից նրանք կարող են հետագայում տեղափոխվել հետսինապսային կարծրուկ[128]։ Հայտնաբերվել են մի քանի սպիտակուցներ, որոնք ընկալիչների տեղափոխման համար խիստ կարևոր են։ Օրինակ, SAP97 սպիտակուցի ավելցուկը տանում է ավելի ակտիվ, քան սովորական պայմաններում, АМРА-ընկալիչի տեղափոխում դեպի սինապսներ[129]։ Այլ սպիտակուցներ, որոնց ակտիվությունը ազդում է АМРА-ընկալիչների տեղափոխման մեջ, միոզինն ու կալցիում-կախյալ շարժական սպիտակուցներն են[130]։
Սինապսային երկար ճնշումը (անգլ.՝ Long-term Depression, LTD) սինապսային ակտիվացումից հետոփոքրացնում է երկու նեյրոնների միջև սինապսային փոխանակումը։ Այս պրոցեսը երկարաժամկետ սինապսային պոտենցացիայի հակադիր դրսևորումն է։ Սինապսային երկար ճնշման առաջացումը ուղեկցվում է դենդրիտներ հետսինապսային թաղանթներում АМРА-ընկալիչների քանակի նվազմամբ՝ կլատրին- և կալցինեյրին-կախյալ ուղիներով։ Դրա հետ մեկտեղ տեղի է ունենում ընկալիչների տեղափոխում այլ մեխանիզմներով, քան երկարաժամկետ պոտենցացիայի դեպքում։ АМРА-ընկալիչների էնդոցիտոզը սկսելու ազդանշանը համարվում է NMDA-ընկալիչի միջոցով արտաքին թաղանթներից կալցիումի ներթափանցումը, Са2+-ի իոնները ակտիվացնում են ֆոսֆատազաները և կալցինեյրինը։ Էնդոցիտոզի գործադրումը կախված է պոտենցիալ-կախյալ կալցիումական պոմպերից, հավանաբար, АМРА-ընկալիչի էնդոցիտոզը մակածվում է ներբջջային կալցիումի կոնցետրացիայից և կապված չէ կոնկրետ մեխանիզմից[7]։ Այն դեպքում, երբ ֆոսֆատազայի ներմուծումը չի ազդում էնդոցիտոզ ընկալիչների վրա, ապա կալցինեյրինի անտագոնիստների ավելացումը զգալի կերպով այն ճնշում է[131]։
Հետսինապսային գոտում կալցինեյրինը փախազդում է սպիտակուցային կոմպլեքսների հետ, որոնք կատարում են էնդոցիտոզ։ Այդ կոմպլեքսը իրենից ներկայացնում է կլատրինի զանգված, որը գտնվում է АМРА-ընկալիչ պարունակող թաղանթի տակ, ինչպես նաև սպիտակուցներ, որոնք իրականացնում են ընկալիչների էնդոցիտոզ (հատկապես էֆեկտիվ է այն դեպքում, եթե նրանք պարունակում են GluR2 և/կամ GluR3 ենթամիավորներ)։ Կալցինեյրինի ակտիվացիան առաջ է բերում դիամինի ակտիվացում, ընդ որում կլատրինի զանգվածը տեղափոխվում է բջջի ներս և ձևավորվում է ներբջջային ներառուկ[132]։ АМРА-ընկալիչները, որոնք անցնում են ցիտոպլազմայով, հետագայում քայքայվում են լիզոսոմներում կամ էլ կրկին անցնում են հետսինապսային գոտի՝ РІСК1 և РКС սպիտակուցների գործունեության շնորհիվ[133][134]։
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: Explicit use of et al. in: |author2=
(օգնություն)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: External link in |journal=
(օգնություն)CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: Explicit use of et al. in: |author2=
(օգնություն)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: External link in |journal=
(օգնություն)
{{cite journal}}
: External link in |journal=
(օգնություն)CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)(չաշխատող հղում)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)
{{cite journal}}
: CS1 սպաս․ բազմաթիվ անուններ: authors list (link)