Desain wahana antariksa adalah proses penerapan prinsip-prinsip rekayasa sistem secara sistematis untuk membangun wahana yang kompleks untuk misi yang melibatkan perjalanan , operasi , atau eksplorasi di luar angkasa . Proses desain ini menghasilkan spesifikasi desain terperinci , skema , dan rencana untuk sistem wahana antariksa, termasuk dokumentasi komprehensif yang menguraikan arsitektur, subsistem, komponen, antarmuka, dan persyaratan operasional wahana antariksa, dan mungkin beberapa model prototipe atau simulasi , yang semuanya secara bersama-sama berfungsi sebagai cetak biru untuk pembuatan, perakitan, integrasi, dan pengujian wahana antariksa untuk memastikan bahwa wahana antariksa tersebut memenuhi tujuan misi dan kriteria kinerja. Mendesain dan membangun satelit biasanya memakan waktu beberapa tahun, dalam beberapa kasus bahkan puluhan tahun, karena berbagai aspek perlu diperhitungkan – terutama ketika konsep misi masih baru. Tahap desain terdiri dari beberapa tugas yang bertujuan tidak hanya untuk mengembangkan instrumen khusus untuk misi tersebut – muatan – tetapi juga untuk memastikan bahwa wahana antariksa memenuhi persyaratan misi dari perspektif logistik. Sering kali, mengoptimalkan berbagai parameter memerlukan beberapa iterasi dan mengarah pada penerimaan trade-off.
Desain wahana antariksa dilakukan dalam beberapa fase. Awalnya, desain konseptual dibuat untuk menentukan kelayakan dan keinginan sistem wahana antariksa baru, yang menunjukkan adanya desain yang kredibel untuk melaksanakan misi tersebut. Tinjauan desain konseptual memastikan bahwa desain tersebut memenuhi pernyataan misi tanpa cacat teknis apa pun sekaligus konsisten secara internal. Selanjutnya, desain awal dilakukan, yang berfokus pada kinerja fungsional, definisi persyaratan, dan definisi antarmuka pada tingkat subsistem dan sistem. Tinjauan desain awal mengevaluasi kecukupan desain awal. Pada fase berikutnya, desain terperinci dibuat dan dikodekan untuk sistem secara keseluruhan dan semua subsistem, dan tinjauan desain kritis dilakukan untuk mengevaluasi apakah desain tersebut cukup terperinci untuk membuat, mengintegrasikan, dan menguji sistem.
Sepanjang desain wahana antariksa, risiko potensial diidentifikasi, dinilai, dan dikurangi secara ketat, komponen sistem terintegrasi dengan benar dan diuji secara komprehensif. Seluruh siklus hidup (termasuk peluncuran, operasi misi, dan pembuangan akhir misi) diperhitungkan. Proses tinjauan dan pengujian berulang terus digunakan untuk memperbaiki, mengoptimalkan, dan meningkatkan efektivitas dan keandalan desain. Secara khusus, massa, daya, kendali termal, propulsi, kendali ketinggian, telekomunikasi, komando dan data, dan aspek struktural wahana antariksa dipertimbangkan. Memilih kendaraan peluncur yang tepat dan mengadaptasi desain ke kendaraan peluncur yang dipilih juga penting. Kepatuhan terhadap peraturan, kepatuhan terhadap standar Internasional, merancang lingkungan antariksa yang berkelanjutan dan bebas serpihan adalah beberapa pertimbangan lain yang menjadi penting akhir-akhir ini.
Desain wahana antariksa mencakup desain wahana antariksa robotik ( satelit dan wahana antariksa planet ), dan wahana antariksa untuk penerbangan antariksa manusia ( pesawat antariksa dan stasiun antariksa ). Wahana antariksa yang membawa manusia memerlukan sistem pendukung kehidupan tambahan, akomodasi awak, dan langkah-langkah keselamatan untuk mendukung penghuni manusia, serta pertimbangan rekayasa faktor manusia seperti ergonomi, kenyamanan awak, dan kesejahteraan psikologis. Wahana antariksa robotik memerlukan otonomi, keandalan, dan kemampuan operasi jarak jauh tanpa kehadiran manusia. Sifat khas dan kebutuhan serta kendala unik yang terkait dengan masing-masing wahana tersebut berdampak signifikan pada pertimbangan desain wahana antariksa.
Perkembangan terkini dalam desain wahana antariksa meliputi sistem propulsi listrik (misalnya pendorong ion dan pendorong efek Hall ) untuk propulsi impuls spesifik tinggi, layar surya (menggunakan tekanan radiasi surya ) untuk dorongan kontinu tanpa memerlukan roket tradisional, manufaktur aditif ( percetakan 3D ) dan material canggih (misalnya komposit canggih , nanomaterial , dan material pintar ) untuk pembuatan prototipe cepat dan produksi komponen ringan dan tahan lama, sistem otonom berbantuan kecerdasan buatan dan pembelajaran mesin untuk otonomi wahana antariksa dan peningkatan efisiensi operasional dalam misi jarak jauh dan jauh, teknologi pemanfaatan sumber daya in situ (ISRU) untuk ekstraksi dan pemanfaatan sumber daya lokal pada benda-benda langit, dan CubeSat dan satelit miniatur standar lainnya untuk misi luar angkasa hemat biaya di sekitar Bumi.
Desain wahana antariksa melibatkan para ahli dari berbagai bidang seperti teknik, fisika, matematika, ilmu komputer, dll. yang berkumpul untuk berkolaborasi dan berpartisipasi dalam kerja sama tim interdisipliner. Lebih jauh lagi, kolaborasi dan kemitraan internasional antara badan antariksa, organisasi, dan negara membantu berbagi keahlian, sumber daya, dan kemampuan untuk saling menguntungkan semua pihak. Tantangan desain wahana antariksa mendorong inovasi teknologi dan terobosan teknik di sektor profesional dan industri. Kompleksitas desain wahana antariksa melibatkan siswa dalam mata pelajaran STEM (sains, teknologi, teknik, dan matematika), menumbuhkan literasi ilmiah, dan menginspirasi generasi ilmuwan, insinyur, dan inovator berikutnya.[1][2][3][4]
Desain wahana antariksa lahir sebagai sebuah disiplin ilmu pada tahun 1950-an dan 60-an dengan munculnya program eksplorasi antariksa Amerika dan Soviet . Sejak saat itu, desain wahana antariksa telah mengalami kemajuan, meskipun biasanya kurang dari teknologi terestrial yang sebanding. Hal ini sebagian besar disebabkan oleh lingkungan antariksa yang menantang, tetapi juga karena kurangnya R&D dasar, dan faktor budaya lainnya dalam komunitas desain. Di sisi lain, alasan lain untuk desain aplikasi perjalanan antariksa yang lambat adalah biaya energi yang tinggi, dan efisiensi yang rendah, untuk mencapai orbit. Biaya ini mungkin dianggap sebagai "biaya awal" yang terlalu tinggi.
Desain pesawat ruang angkasa menggabungkan aspek-aspek dari berbagai disiplin ilmu, yaitu:
Satelit hadir dalam berbagai ukuran dan bentuk, tetapi semuanya mengandung elemen dasar yang sama yang dibutuhkan untuk menjalankan misi di luar angkasa. Elemen-elemen satelit dapat dibagi menjadi dua kategori. Kategori pertama berhubungan dengan komponen-komponen yang menjaga satelit tetap beroperasi dalam kondisi lingkungan antariksa yang keras. Oleh karena itu, elemen-elemen tersebut merupakan elemen umum untuk semua satelit, dalam satu bentuk atau lainnya. Kategori kedua berhubungan dengan bagian-bagian satelit yang khusus untuk misinya, yang dikenal sebagai muatan. Muatan sangat bervariasi tergantung pada jenis misi yang dirancang untuk satelit tersebut. Sebagai contoh, muatan dapat mencakup transponder (untuk satelit komunikasi), jam atom dan pemancar sinyal (untuk satelit navigasi), sistem pencitraan optik dan/atau radar (untuk observasi Bumi, prakiraan cuaca, aplikasi militer, sains), instrumen dan sensor ilmiah in-situ (untuk satelit ilmiah), atau peralatan teknologi (untuk satelit demonstrasi teknologi).
Satelit adalah sistem kompleks yang harus beroperasi dalam kondisi lingkungan yang keras (misalnya vakum, gradien suhu yang kuat) dan dengan cara yang terbatas untuk mengendalikannya. Karena alasan ini, fase desain sangat penting, yang membutuhkan berbagai keahlian. Oleh karena itu, para insinyur sistem sering berinteraksi dengan spesialis subsistem untuk mencapai konsep yang memenuhi semua kendala. Banyak pilihan yang dibuat untuk mengatasi pertimbangan di atas akan memerlukan penambahan elemen ke satelit. Hal ini pada gilirannya akan meningkatkan massa total wahana antariksa , dengan konsekuensi langsung pada keseluruhan biaya misi . Satelit yang lebih berat berarti biaya peluncuran yang lebih tinggi. Ini juga berarti bahwa lebih banyak daya dorong akan diperlukan untuk manuver orbital, yang akan memperpendek durasi misi atau memerlukan lebih banyak bahan bakar, membuat satelit kembali menjadi lebih berat, Massa dapat dikurangi dengan desain subsistem alternatif atau menggunakan material yang lebih ringan, tetapi pilihan ini biasanya meningkatkan biaya, bahkan mungkin melebihi anggaran misi. Oleh karena itu, pertimbangan dan beberapa iterasi sangat penting untuk mencapai solusi terbaik.
Bus wahana antariksa membawa muatan. Subsistemnya mendukung muatan dan membantu mengarahkan muatan dengan benar. Bus ini menempatkan muatan pada orbit yang tepat dan mempertahankannya di sana. Bus ini menyediakan fungsi tata graha. Bus ini juga menyediakan pemeliharaan orbit dan posisi, tenaga listrik, perintah, telemetri, dan penanganan data, struktur dan kekakuan, kontrol suhu, penyimpanan data, dan komunikasi, jika diperlukan. Muatan dan bus wahana antariksa dapat berupa unit yang berbeda atau dapat berupa gabungan. Adaptor pendorong menyediakan antarmuka pembawa muatan dengan wahana (muatan dan bus wahana antariksa secara bersamaan).
Wahana antariksa juga dapat memiliki muatan propelan, yang digunakan untuk menggerakkan atau mendorong wahana ke atas, dan tahap pendorong propulsi. Propelan yang umum digunakan adalah gas terkompresi seperti nitrogen, gas seperti monopropelan hidrazin atau bahan bakar padat, yang digunakan untuk koreksi kecepatan dan kendali arah. Dalam tahap pendorong (juga disebut motor pendorong apogee, modul propulsi, atau tahap propulsi integral), motor roket terpisah digunakan untuk mengirim wahana antariksa ke orbit misinya. Saat merancang wahana antariksa, orbit yang akan digunakan harus dipertimbangkan karena memengaruhi kendali arah, desain termal, dan subsistem tenaga listrik. Namun, efek-efek ini bersifat sekunder dibandingkan dengan efek yang disebabkan pada muatan karena orbit. Jadi, saat merancang misi; perancang memilih orbit yang meningkatkan kinerja muatan. Perancang bahkan menghitung karakteristik kinerja wahana antariksa yang dibutuhkan seperti penunjuk, kendali termal, kuantitas daya, dan siklus tugas. Wahana antariksa kemudian dibuat, yang memenuhi semua persyaratan.
Subsistem penentuan dan kontrol sikap (ADCS) digunakan untuk mengubah sikap (orientasi) wahana antariksa. Ada beberapa torsi eksternal yang bekerja pada wahana antariksa di sepanjang sumbu yang melewati pusat gravitasinya yang dapat mengubah orientasi wahana antariksa ke segala arah atau dapat membuatnya berputar. ADCS meniadakan torsi ini dengan menerapkan torsi yang sama dan berlawanan menggunakan proion dan navigasi. Momen inersia badan harus dihitung untuk menentukan torsi eksternal yang juga memerlukan penentuan sikap absolut wahana menggunakan sensor. Properti yang disebut 'kekakuan giroskopik' digunakan untuk mengurangi efek putaran. Wahana antariksa yang paling sederhana mencapai kontrol dengan berputar atau berinteraksi dengan medan magnet atau gravitasi Bumi. Terkadang mereka tidak terkendali. Wahana antariksa mungkin memiliki beberapa badan atau mereka melekat pada bagian-bagian penting, seperti susunan surya atau antena komunikasi yang memerlukan penunjuk sikap individual. Untuk mengendalikan sikap pelengkap, aktuator sering digunakan, dengan sensor dan pengontrol terpisah. Berbagai jenis teknik kontrol yang digunakan adalah:
Telemetri, pelacakan, dan perintah (TT&C) digunakan untuk komunikasi antara wahana antariksa dan sistem darat. Fungsi subsistemnya adalah:
Proses pengiriman informasi ke wahana antariksa disebut uplink atau forward link dan proses sebaliknya disebut downlink atau return link. Uplink terdiri dari perintah dan nada jarak sedangkan downlink terdiri dari telemetri status, nada jarak dan bahkan dapat mencakup data muatan. Penerima, pemancar dan antena sudut lebar (hemispheric atau omnidirectional) adalah komponen utama dari subsistem komunikasi dasar. Sistem dengan kecepatan data tinggi bahkan dapat menggunakan antena terarah, jika diperlukan. Subsistem dapat memberi kita koherensi antara sinyal uplink dan downlink, yang dengannya kita dapat mengukur pergeseran Doppler kecepatan jarak. Subsistem komunikasi diukur berdasarkan kecepatan data, tingkat kesalahan yang dibolehkan, panjang jalur komunikasi, dan frekuensi RF.
Sebagian besar pesawat ruang angkasa berkomunikasi menggunakan antena radio -- komunikasi satelit . Beberapa pesawat ruang angkasa berkomunikasi menggunakan laser — baik secara langsung ke tanah seperti dengan LADEE ; atau antara satelit seperti dengan OICETS , Artemis , Alphabus , dan European Data Relay System .
Subsistem tenaga listrik (EPS) terdiri dari 4 subunit:
Subsistem kontrol termal (TCS) digunakan untuk menjaga suhu semua komponen wahana antariksa dalam batas tertentu. Batas atas dan bawah ditetapkan untuk setiap komponen. Ada dua batasan, yaitu operasional (dalam kondisi kerja) dan survival (dalam kondisi tidak bekerja). Suhu dikontrol dengan menggunakan isolator, radiator, pemanas, kisi-kisi dan dengan memberikan lapisan permukaan yang tepat pada komponen.
Fungsi utama subsistem propulsi adalah untuk menyediakan daya dorong sehingga dapat mengubah kecepatan translasi pesawat antariksa atau untuk menerapkan torsi guna mengubah momentum sudutnya. Tidak ada persyaratan daya dorong dan karenanya bahkan tidak ada persyaratan peralatan propulsi dalam pesawat antariksa yang paling sederhana. Namun, banyak dari mereka memerlukan daya dorong yang terkendali dalam sistem mereka, sehingga desain mereka mencakup beberapa bentuk propulsi terukur (sistem propulsi yang dapat dihidupkan dan dimatikan dalam peningkatan kecil). Daya dorong digunakan untuk tujuan berikut: untuk mengubah parameter orbital, untuk mengendalikan sikap selama daya dorong, memperbaiki kesalahan kecepatan, manuver, gaya gangguan lawan (misalnya, hambatan), dan mengendalikan serta memperbaiki momentum sudut. Subsistem propulsi mencakup propelan, tangki, sistem distribusi, penekan, dan kontrol propelan. Ini juga mencakup pendorong atau mesin.
Desain wahana antariksa selalu didasarkan pada arsitektur misi khusus dari penerbangan antariksa yang sedang dipertimbangkan. Biasanya, berbagai arsitektur misi dapat dibayangkan untuk mencapai tujuan keseluruhan penerbangan, baik untuk mengumpulkan data ilmiah atau sekadar mengangkut kargo melintasi lingkungan antariksa untuk melayani berbagai tujuan, baik tujuan pemerintah maupun ekonomi.
Arsitektur misi penerbangan antariksa akan menentukan apakah wahana antariksa akan bersifat otonom atau telerobotik , atau bahkan berawak untuk menangani keadaan darurat atau tujuan misi tertentu. Pertimbangan lain termasuk lintasan cepat atau lambat, susunan dan kapasitas muatan, lamanya misi, atau tingkat redundansi sistem sehingga penerbangan dapat mencapai berbagai tingkat toleransi kesalahan .
Desain misi antariksa dibagi menjadi beberapa fase , yang masing-masing terkait dengan milestone tertentu . Meskipun ada beberapa perbedaan (terutama dalam terminologi) antara fase-fase ini sebagaimana didefinisikan oleh ESA , NASA , JAXA , dan pelaku sektor antariksa lainnya, semuanya mengikuti logika dan perkembangan yang sama. Konsep menyeluruhnya disebut rekayasa siklus hidup .
Proyek luar angkasa biasanya dimulai dengan fase awal—disebut Fase 0 oleh ESA dan JAXA , dan Pra-Fase A oleh NASA —yang berfokus pada pendefinisian tujuan misi dan penilaian kelayakan tingkat tinggi. Fase-fase berikutnya disebut dengan huruf dari A hingga F, dan terdiri dari studi kelayakan yang lebih rinci (Fase A), definisi awal yang mempertimbangkan solusi teknologi (Fase B), definisi terperinci yang terkait dengan pembangunan model uji yang mengarah ke desain akhir (Fase C), kualifikasi dan produksi (Fase D), peluncuran, penyebaran, komisioning, dan operasi misi (Fase E), dan akhirnya pembuangan satelit pada akhir masa pakainya (Fase F).
Tonggak pencapaian merupakan langkah-langkah perantara utama dalam proyek yang memungkinkan penilaian kemajuan yang telah dicapai dalam desain misi. Sebagian besar tonggak pencapaian dikaitkan dengan penyelesaian deliverable , dokumen yang merangkum hasil studi, pilihan yang dibuat dalam desain, atau tinjauan kinerja yang terkait dengan fase proyek tertentu. Meskipun dokumen-dokumen ini mungkin panjang, sangat teknis, rumit, dan birokratis, dokumen-dokumen ini penting untuk memastikan keberhasilan misi, karena tujuannya adalah untuk mengidentifikasi semua masalah potensial dan mendokumentasikan keputusan dan justifikasinya.
Sebelum menerbangkan satelit, kekokohan dan kinerja desainnya harus divalidasi. Hal ini dicapai berkat serangkaian pengujian yang dilakukan pada prototipe selama Fase C dan D proyek. Di ESA , pengujian satelit terdiri dari hal-hal berikut:
STM dibangun sedemikian rupa sehingga komponen strukturalnya mirip dengan yang akan digunakan untuk konstruksi FM, tetapi elektroniknya mungkin tidak berfungsi. Sebaliknya, EM dibangun agar mirip dengan FM, meskipun mungkin menyertakan beberapa komponen yang bukan kelas antariksa. Namun, QM dimaksudkan agar identik dengan FM.
Segmen darat adalah kumpulan komponen berbasis darat yang memungkinkan pengelolaan wahana antariksa dan distribusi data muatan dan telemetri. Komponen utama segmen darat meliputi:
Komponen lain dari segmen darat meliputi:
Segmen darat sangat penting untuk pengiriman layanan satelit, karena mendukung operasi dan kendali satelit, dan memastikan keandalan, efisiensi, dan jangkauan komunikasi satelit yang luas.
Segmen darat sebagai layanan (GSaaS) menyediakan akses bagi operator satelit ke jaringan stasiun darat dengan basis bayar per penggunaan. Hal ini menghilangkan kebutuhan investasi awal yang secara tradisional dikaitkan dengan pembangunan dan pemeliharaan infrastruktur darat.
Antena stasiun darat meningkatkan penerimaan sinyal dengan penguatan tinggi dan kemampuan pelacakan. Penguat stasiun darat meningkatkan daya sinyal dan mempertahankan kualitas untuk komunikasi yang andal. Penerima stasiun darat menangkap sinyal satelit di berbagai pita frekuensi dengan sensitivitas tinggi.
Stasiun darat yang berkomunikasi dengan satelit di orbit dan pengguna di darat memiliki beberapa komponen, termasuk:
Stasiun darat sangat penting untuk transmisi data satelit. Mereka dapat:
Suar pengguna satelit adalah perangkat yang mengirimkan sinyal marabahaya ke sistem satelit global, yang kemudian meneruskan panggilan ke jaringan lembaga tanggap darurat. Beberapa contoh suar pengguna satelit meliputi:
dengan praprosesor sederhana sebelum dimasukkan ke PC dekode.
Berikut ini beberapa suar pengguna satelit:
Pelampung cuaca adalah instrumen yang mengumpulkan data laut dan cuaca, dan digunakan dalam tanggap darurat, proses hukum, dan desain teknik. Ada dua jenis pelampung cuaca: yang ditambatkan dan yang hanyut. Pelampung yang ditambatkan dihubungkan ke dasar laut menggunakan rantai, nilon, atau polipropilena yang dapat mengapung. Daya apung adalah sifat suatu objek yang memungkinkannya mengapung di permukaan cairan atau tetap tersuspensi dalam cairan yang dapat dimampatkan, seperti atmosfer. Beberapa contoh instrumen cuaca meliputi:
Data stasiun cuaca penting untuk pertanian, perencanaan energi terbarukan, manajemen bencana, dan penelitian iklim. Data stasiun cuaca yang akurat dan dapat diandalkan membantu orang membuat keputusan yang tepat, beradaptasi dengan perubahan kondisi cuaca, dan mengurangi dampak peristiwa cuaca ekstrem.
Ada 10 perusahaan besar yang membangun platform satelit Geosynchronous komersial yang besar :
Perusahaan | Lokasi | Jumlah satelit yang diluncurkan | Komentar |
---|---|---|---|
Airbus Defence and Space | Eropa (Prancis/Jerman/Spanyol/Inggris Raya) | sebelumnya Astrium | |
OHB SE | Eropa (Jerman/Italia/Luksemburg/Swedia/Prancis/Belgia) | ||
Boeing Defense, Space & Security | Amerika Serikat | sebelumnya Boeing Integrated Defense Systems | |
INVAP | Argentina | 6 | INVAP tengah mengembangkan satelit baru ARSAT-3 SAOCOM SABIA-Mar |
JSC Information Satellite Systems | Rusia | 1200[5] | sebelumnya NPO PM |
Lockheed Martin Space | Amerika Serikat | ||
Northrop Grumman | Amerika Serikat | sebelumnya Orbital ATK | |
Raytheon | Amerika Serikat | Salah satu penyedia sensor ruang angkasa terbesar di dunia. | |
Maxar Space | Amerika Serikat | 285[6][7] | sebelumnya Space Systems Loral, sebelumnya SSL, anak perusahaan Maxar Technologies |
Thales Alenia Space | Eropa (Prancis/Italia/Inggris Raya/Spanyol/Belgia/Jerman/Polandia) | sebelumnya Alcatel Alenia Space |
Perusahaan | Lokasi | Jumlah wahana antariksa yang diluncurkan | Komentar |
---|---|---|---|
Brown Engineering Company | Huntsville, AL Amerika Serikat | Penjelajah untuk program bulan Apollo | |
China National Space Administration | Tiongkok | untuk program Chang'e 3 pada tahun 2013 | |
Deep Space Industries | Mountain View, CA Amerika Serikat | ||
Lavochkin | Rusia | penjelajah untuk Lunokhod 1 | |
NASA JPL | Amerika Serikat | untuk misi bulan ATHLETE, Mars Pathfinder, Opportunity dan penjelajah Spirit | |
ISRO | India | Chandrayaan-1, Chandrayaan-2, Mars Orbiter Mission | |
Planetary Resources | Redmond, WA Amerika Serikat | Arkyd-100 untuk pencarian asteroid |
Perusahaan | Lokasi | Produksi | Catatan |
---|---|---|---|
Orbital Machines AS | Trondheim, Norwegia dan Berlin, Jerman | Pompa propelan elektrik untuk kendaraan peluncur dan pesawat ruang angkasa | |
Comat | Flourens, Prancis | Pakar mekanisme Peralatan Ruang Angkasa, dari desain hingga MAIT (Manufaktur, Perakitan, Integrasi, Pengujian).
Solusi siap pakai SmallSat termasuk ADCS (rentang roda reaksi), SADM, struktur yang dapat dipasang, dan propulsi elektrik (Plasma Jet Pack) |
Roda reaksi dan antena yang dapat dipasang dari COMAT telah dipilih untuk digunakan pada konstelasi IoT Kineis yang akan datang. |
Astro- und Feinwerktechnik Adlershof GmbH | Berlin, Jerman | Desain, Manufaktur, Perakitan, Integrasi, dan Verifikasi bus satelit kecil (TET-1, diluncurkan Juli 2012) dan komponen. Komponen kontrol sikap (roda reaksi, sistem giro, penerima GPS, magnetometer)
Pemasok sistem ruang angkasa dan muatan ISS NightPod |
|
Bradford Space | New York, NY | Pemasok sistem propulsi hijau, mesin roket, Sensor Matahari, roda reaksi, unit pengukuran percepatan, dan stasiun kerja astronot. | Lebih dari 100 pendorong di luar angkasa |
Dynetics | Madison, AL Amerika Serikat | digunakan pada Sundancer dan Ares I | |
Tethers Unlimited, Inc. | Seattle, WA Amerika Serikat | Perangkat De-Orbiting, Deployable Solar Arrays, Sistem Propulsi, Komunikasi Radio, dan Robotika | |
RUAG Space | Swiss | Struktur, Fairing, Mekanisme, Opto-Elektronik | |
AB 360 Space | Amerika Serikat | produsen sistem Propulsi listrik gabungan CLEPS-C100, Mesin Pendorong yang Dapat Disesuaikan untuk perjalanan Mars | |
GAUSS Srl | Roma, Italia | Platform Luar Angkasa Lengkap, Struktur dan Deployer Nanosatelit, OBDH, EPS, Komunikasi Radio, Panel Surya, dan sistem Stasiun Bumi | |
GomSpace | Denmark, Luksemburg, Swedia | Platform dan struktur 1U hingga 16U, sistem propulsi, radio yang ditentukan perangkat lunak, antena pita S-/X-/VHF, rangkaian ADCS, sistem tenaga listrik, panel surya, komputer di pesawat, peralatan darat, dll. | |
Andrews Space | Seattle, WA Amerika Serikat | ||
Jena-Optronik[8] | Jena, Jerman | Sensor Sistem Kontrol Sikap dan Orbit (AOCS): sensor bintang, sensor Matahari, sensor pertemuan dan dok; Instrumen dan komponen ruang angkasa optik: pencitra multispektral (misalnya JSS 56 untuk konstelasi satelit RapidEye), radiometer yang efisien (misalnya METimage), subsistem dan komponen elektronik serta opto-mekanik untuk observasi Bumi operasional (misalnya untuk misi Copernicus Sentinel) | |
Pumpkin, Inc | San Francisco, CA Amerika Serikat | Kit CubeSat[9] | |
Mynaric | Munich Jerman | Peralatan komunikasi laser untuk jaringan komunikasi udara dan antariksa, yang disebut Konstelasi. | |
Kongsberg Defence & Aerospace[10] | Kongsberg Norwegia | Kongsberg Adaptive Rotational Mechanism Assembly [KARMA] dalam konfigurasi sebagai Solar Array Drive Mechanism (SADM), digunakan pada Rosetta (pesawat antariksa), Mars Express, Venus Express, Sentinel 1, Sentinel 3 dan BepiColombo MTM.
Elektronika penggerak untuk Sentinel 1 dan BepiColombo MTM. Penyangga pemasangan booster, termasuk fungsi pemisahan, untuk Ariane 5. |
|
Production Corporation Polyot | Rusia | ||
Rocketstar Robotics Inc[11] | Camarillo, CA Amerika Serikat | Space Interferometry Mission Optical Shutter Mechanisms | |
Sierra Space | Amerika Serikat | sebelumnya SpaceDev, dimiliki oleh Sierra Space | |
Clyde Space | Glasgow, Skotlandia | Elektronik Sistem Daya, Baterai, Panel Surya, Sistem Kontrol Sikap | Diakuisisi oleh ÅAC Microtec[12] |
Astro Aerospace[13] | Carpinteria, CA Amerika Serikat | Mekanisme yang dapat dikerahkan, struktur wahana antariksa, reflektor yang dapat dikerahkan AstroMesh, boom yang dapat dikerahkan, antena reflektor jala bukaan besar dan kecil, STEM (Storable Tubular Extendable Member), mekanisme engsel, | Unit bisnis khusus Northrop Grumman |
TRANSPACE Technologies[14] | Bangalore, KA India | Pembuatan, Pengujian, Analisis Keandalan, dan Desain PCB Sub-Sistem Satelit di Dalam Pesawat | Vendor Resmi untuk Pusat Satelit ISRO, India |
RadioBro Corporation[15] | Huntsville, Alabama, Amerika Serikat | Komunikasi Pesawat Luar Angkasa Kecil, Pengujian Kesiapan Terbang, Layanan Pelatihan[16] | |
Howco Additive Manufacturing[17] | Houston, Texas, Amerika Serikat | Komponen Dirgantara Cetak 3D dalam In718 dan Titanium | |
Solar MEMS Technologies[18] | Spanyol | Sensor Matahari untuk Satelit[19] | |
solusi teknologi kripton | Amerika Serikat | Komponen pesawat ruang angkasa kecil, servis di orbit, bus pesawat ruang angkasa 1U hingga 24U | |
CisLunar Industries | Amerika Serikat | Catu daya untuk sistem propulsi listrik dan perangkat keras ruang angkasa |
Nama perusahaan | Negara | Mesin | Jenis mesin | Komentar |
---|---|---|---|---|
Dawn Aerospace | Netherlands | B20, B1, SatDrive, Cubedrive | Bi-Propellant, Cold Gass | Nitrous Oxide based, turnkey propulsion systems |
ArianeGroup | Lampoldshausen, Germany | S10, S20, S200, S400
CHT-1N, CHT-20N, CHT-400N RIT-10, RIT-2x |
propellant and Monopropellant Thrusters, Gridded Ion Thrusters | Main manufacturer for Propulsion Systems, Equipments and Services in Europe, serving major space projects like ATV, ORION-ESM, ExoMars, JUICE, MTG, GEO and EO satellites with Propulsion Solutions. |
Comat | Flourens, France | Plasma Jet Pack | Vacuum Arc thruster ; Modular installation (PPSU + Nozzles) | To be used on @Isispace and @U-space platforms for French and European missions.
Modular Thruster with up to 4 nozzles per PPSCU. |
AB 360 Space | Washington DC, United States | CLEPS X-100, CLEPS C100 | hybrid Thrusters, Combined Liquid Electric Propulsion Systems, Methane/ Oxygen Ion Thrusters | Uses Electric and Liquid Propulsion simultaneously for space propulsion for LEO/MEOsatellites[20] |
Moog-ISP (In Space Propulsion) | Westcott, Buckinghamshire United Kingdom
Niagara Falls, NY United States |
All Forms of Chemical Propulsion including Main Apogee Engines and AOCS Thrusters | Bipropellant and Monopropellant Product Families Include: LEROS, MONARC Thruster, LTT Thruster | Division of Moog Inc. |
Bradford Space | New York, NY | LMP-103s thrusters,
Water based thrusters |
LMP-103s green monopropellant propulsion systems & thrusters,
COMET water based propulsion systems |
>100 thrusters on flight satellites |
Busek | Natick, Massachusetts United States | BHT-200, BHT-1500, BHT-20k, BET-1, BmP-220, BIT-1, BIT-3, BIT-7, uPPT-3 | Hall-effect thruster, Gridded Ion, Electrospray, micro Pulsed Plasma, Green Monopropellant, Electrothermal, Hollow Cathodes, Field Emission Cathode | TacSat-2, FalconSat-5, FalconSat-6, ST-7/LISA Pathfinder. Licensed technology for BPT-4000 aboard AEHF 1, AEHF 2, AEHF 3. Propulsion options ranging from CubeSats to GEO Communications Satellites to Asteroid Redirect Mission Spacecraft.[21] |
Aerojet Rocketdyne | Rancho Cordova, California United States | Numerous | liquid rocket engine, Solid rocket engine, Hall-effect thruster, Gridded Ion thruster. | |
Hanwha Aerospace | South Korea | KRE-075, KRE-007 and Monopropellant Thrusters | Bipropellant, Monopropellant and Motor | Hanwha aerospace manufacturing liquid rocket engine for KSLV-II and monopropellant enginesd spacecraft (Lunar Orbiter, KOMPSAT series, etc.). The engines are co-developed with KARI. |
American Rocket Company | United States | hybrid rocket | intellectual property acquired by SpaceDev | |
CU Aerospace | Champaign, IL United States | PUC, CHIPS, PPT-11 | MCD[22] / Resistojet / PPT[23] | Small satellite / CubeSat Propulsion Modules[24] |
VIPER | liquid rocket engine | reusable rocket engine[25] | ||
Ad Astra Rocket Company | Webster, TX United States | VASIMR | magnetoplasma | may be used for future Mars missions |
Enpulsion GmbH | Wiener Neustadt, Austria | Propulsion Systems for Cubesats, Small Sats, and Medium/Large Satellites | Field Emission Electric Propulsion | Enpulsion is commercializing a technology that has been developed for ESA science missions for more than 10 years.[26] |
PLD Space | Spain | TREPEL family | used on Miura Rockets | |
Reaction Engines Ltd. | Oxfordshire, England United Kingdom | SABRE | combined cycle precooled jet engine and closed cycle rocket engine | planned to be used in Skylon |
LIA Aerospace Ltd. | England United Kingdom | KX11 | Pressure Fed, bipropellant, green, non-toxic, storable regen cooled | used in Zonda 1.0 |
Sierra Space | United States | VR35K-A[27] | hybrid rocket, liquid rocket engine[28] | Commercial space subsidiary of Sierra Nevada Corporation |
SpaceDev | Poway, CA United States | hybrid rocket | acquired by Sierra Space; used on SpaceShipOne and SpaceShipTwo | |
SpaceX | Hawthorne, California, United States | Merlin / Raptor / Draco / Kestrel | liquid rocket engine | used on SpaceX rockets and spacecraft (Falcon, Starship, Dragon) |
ArianeGroup | Vernon, France | Vinci / Viking / Vulcain / HM7B | liquid rocket engine | used on Ariane rockets |
NPO Energomash | Russia | liquid rocket engine | used on R-7, Molniya, Soyuz, Energia, Zenit, Atlas III, Atlas V, Angara, Antares | |
KBKhA | Russia | liquid rocket engine | used on Soyuz, Proton, Energia | |
KBKhM | Russia | liquid rocket engine | used on Vostok, Voskhod, Zenit, Soyuz, Progress, Salyut 1, Salyut 4, Salyut 6, Salyut 7, Mir Core Module, Zvezda, GSLV Mk I | |
NIIMash | Russia | liquid rocket engine | used on Almaz, Buran, Briz-M | |
TsNIIMash | Russia | used on STEX | ||
Kuznetsov Design Bureau | Russia | liquid rocket engine | used on N1, Soyuz-2-1v, Antares | |
OKB Fakel | Russia | Hall-effect thruster | used on SMART-1, LS-1300 | |
Proton-PM | Russia | liquid rocket engine | used on Proton, Angara | |
Keldysh Research Center | Russia | |||
Voronezh Mechanical Plant | Russia | liquid rocket engine | used on Vostok, Voskhod, Molniya, Soyuz, Proton, Energia, Luna | |
Yuzhnoye Design Office / Yuzhmash | Ukraine |
|
used on
| |
Independence-X Aerospace | Malaysia | ID-1, ID-2, ID-3 and unnamed 2-stage rocket engine for DNLV | solid rocket motor and liquid rocket engine | used on ID-1, ID-2 and DNLV rocket |
Borneo SubOrbitals | Malaysia | hybrid rocket | used on yet-to-be-named rocket | |
Apollo Fusion | United States | ACE, ACE Max | Hall-effect thruster | To be used on Spaceflight, Inc.'s Sherpa-LTE space tug[29] |
Benchmark Space Systems | United States | Starling, Halcyon, Peregrine | Warm gas thruster, High-test peroxide thruster, Hypergolic thruster | To be used on Spaceflight, Inc.'s Sherpa-LTC space tug[29] |
ThrustMe | France | NPT30, I2T5 | Gridded ion thruster,[30][31] Cold gas thruster[32] | first in-orbit demonstration of an electric propulsion system powered by iodine[33][34] |
|title=
(bantuan)
|title=
(bantuan)
|pmc=
(bantuan). PMID 34789903 Periksa nilai |pmid=
(bantuan).