^Orciani M, Trubiani O, Guarnieri S, Ferrero E, Di Primio R (October 2008). “CD38 is constitutively expressed in the nucleus of human hematopoietic cells”. Journal of Cellular Biochemistry105 (3): 905–12. doi:10.1002/jcb.21887. PMID18759251.
^ abQuarona V, Zaccarello G, Chillemi A (2013). “CD38 and CD157: a long journey from activation markers to multifunctional molecules”. Cytometry Part B84 (4): 207–217. doi:10.1002/cyto.b.21092. PMID23576305.
^van de Donk N, Richardson PG, Malavasi F (2018). “CD38 antibodies in multiple myeloma: back to the future”. Blood131 (1): 13–29. doi:10.1182/blood-2017-06-740944. PMID29118010.
^ abNooka AK, Kaufman JL, Hofmeister CC, Joseph NS (2019). “Daratumumab in multiple myeloma”. Cancer125 (14): 2364–2382. doi:10.1002/cncr.32065. PMID30951198.
^ abcMalavasi F, Deaglio S, Funaro A, Ferrero E, Horenstein AL, Ortolan E, Vaisitti T, Aydin S (July 2008). “Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology”. Physiological Reviews88 (3): 841–86. doi:10.1152/physrev.00035.2007. PMID18626062.
^Marlein CR, Piddock RE, Mistry JJ, Zaitseva L, Hellmich C, Horton RH, Zhou Z, Auger MJ, Bowles KM, Rushworth SA (January 2019). “CD38-driven mitochondrial trafficking promotes bioenergetic plasticity in multiple myeloma”. Cancer Research79 (9): 2285–2297. doi:10.1158/0008-5472.CAN-18-0773. PMID30622116.
^Burgler S (2015). “Role of CD38 Expression in Diagnosis and Pathogenesis of Chronic Lymphocytic Leukemia and Its Potential as Therapeutic Target”. Critical Reviews in Immunology35 (5): 417–32. doi:10.1615/CritRevImmunol.v35.i5.50. PMID26853852.
^Deaglio S, Mehta K, Malavasi F (January 2001). “Human CD38: a (r)evolutionary story of enzymes and receptors”. Leukemia Research25 (1): 1–12. doi:10.1016/S0145-2126(00)00093-X. PMID11137554.
^Xia C, Ribeiro M, Scott S, Lonial S (October 2016). “Daratumumab: monoclonal antibody therapy to treat multiple myeloma”. Drugs of Today52 (10): 551–560. doi:10.1358/dot.2016.52.10.2543308. PMID27910963.
^de Vooght KM, Lozano M, Bueno JL, Alarcon A, Romera I, Suzuki K, Zhiburt E, Holbro A, Infanti L, Buser A, Hustinx H, Deneys V, Frelik A, Thiry C, Murphy M, Staves J, Selleng K, Greinacher A, Kutner JM, Bonet Bub C, Castilho L, Kaufman R, Colling ME, Perseghin P, Incontri A, Dassi M, Brilhante D, Macedo A, Cserti-Gazdewich C, Pendergrast JM, Hawes J, Lundgren MN, Storry JR, Jain A, Marwaha N, Sharma RR (May 2018). “Vox Sanguinis International Forum on typing and matching strategies in patients on anti-CD38 monoclonal therapy: summary”. Vox Sanguinis113 (5): 492–498. doi:10.1111/vox.12653. PMID29781081.
^Blacher E, Ben Baruch B, Levy A, Geva N, Green KD, Garneau-Tsodikova S, Fridman M, Stein R (March 2015). “Inhibition of glioma progression by a newly discovered CD38 inhibitor”. International Journal of Cancer136 (6): 1422–33. doi:10.1002/ijc.29095. PMID25053177.
^Kellenberger E, Kuhn I, Schuber F, Muller-Steffner H (July 2011). “Flavonoids as inhibitors of human CD38”. Bioorganic & Medicinal Chemistry Letters21 (13): 3939–42. doi:10.1016/j.bmcl.2011.05.022. PMID21641214.
^Becherer JD, Boros EE, Carpenter TY, Cowan DJ, Deaton DN, Haffner CD, Jeune MR, Kaldor IW, Poole JC, Preugschat F, Rheault TR, Schulte CA, Shearer BG, Shearer TW, Shewchuk LM, Smalley TL, Stewart EL, Stuart JD, Ulrich JC (September 2015). “Discovery of 4-Amino-8-quinoline Carboxamides as Novel, Submicromolar Inhibitors of NAD-Hydrolyzing Enzyme CD38”. Journal of Medicinal Chemistry58 (17): 7021–56. doi:10.1021/acs.jmedchem.5b00992. PMID26267483.
^Deaton DN, Haffner CD, Henke BR, Jeune MR, Shearer BG, Stewart EL, Stuart JD, Ulrich JC (May 2018). “2,4-Diamino-8-quinazoline carboxamides as novel, potent inhibitors of the NAD hydrolyzing enzyme CD38: Exploration of the 2-position structure-activity relationships”. Bioorganic & Medicinal Chemistry26 (8): 2107–2150. doi:10.1016/j.bmc.2018.03.021. PMID29576271.
^Sepehri B, Ghavami R (January 2019). “Design of new CD38 inhibitors based on CoMFA modelling and molecular docking analysis of 4‑amino-8-quinoline carboxamides and 2,4-diamino-8-quinazoline carboxamides”. SAR and QSAR in Environmental Research30 (1): 21–38. doi:10.1080/1062936X.2018.1545695. PMID30489181.
^Lagu B, Wu X, Kulkarni S, Paul R, Becherer JD, Olson L, Ravani S, Chatzianastasiou A, Papapetropoulos A, Andrzejewski S (July 2022). “Orally Bioavailable Enzymatic Inhibitor of CD38, MK-0159, Protects against Ischemia/Reperfusion Injury in the Murine Heart”. Journal of Medicinal Chemistry65 (13): 9418–9446. doi:10.1021/acs.jmedchem.2c00688. PMID35762533.
^Kang BE, Choi J, Stein S, Ryu D (2020). “Implications of NAD + boosters in translational medicine”. European Journal of Clinical Investigation50 (10): e13334. doi:10.1111/eci.13334. PMID32594513.
States DJ, Walseth TF, Lee HC (December 1992). “Similarities in amino acid sequences of Aplysia ADP-ribosyl cyclase and human lymphocyte antigen CD38”. Trends in Biochemical Sciences17 (12): 495. doi:10.1016/0968-0004(92)90337-9. PMID1471258.
Malavasi F, Funaro A, Roggero S, Horenstein A, Calosso L, Mehta K (March 1994). “Human CD38: a glycoprotein in search of a function”. Immunology Today15 (3): 95–7. doi:10.1016/0167-5699(94)90148-1. PMID8172650.
Funaro A, Malavasi F (1999). “Human CD38, a surface receptor, an enzyme, an adhesion molecule and not a simple marker”. Journal of Biological Regulators and Homeostatic Agents13 (1): 54–61. PMID10432444.
Jackson DG, Bell JI (April 1990). “Isolation of a cDNA encoding the human CD38 (T10) molecule, a cell surface glycoprotein with an unusual discontinuous pattern of expression during lymphocyte differentiation”. Journal of Immunology144 (7): 2811–5. PMID2319135.
Dianzani U, Bragardo M, Buonfiglio D, Redoglia V, Funaro A, Portoles P, Rojo J, Malavasi F, Pileri A (May 1995). “Modulation of CD4 lateral interaction with lymphocyte surface molecules induced by HIV-1 gp120”. European Journal of Immunology25 (5): 1306–11. doi:10.1002/eji.1830250526. PMID7539755.
Nakagawara K, Mori M, Takasawa S, Nata K, Takamura T, Berlova A, Tohgo A, Karasawa T, Yonekura H, Takeuchi T (1995). “Assignment of CD38, the gene encoding human leukocyte antigen CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase), to chromosome 4p15”. Cytogenetics and Cell Genetics69 (1–2): 38–9. doi:10.1159/000133933. PMID7835083.
Tohgo A, Takasawa S, Noguchi N, Koguma T, Nata K, Sugimoto T, Furuya Y, Yonekura H, Okamoto H (November 1994). “Essential cysteine residues for cyclic ADP-ribose synthesis and hydrolysis by CD38”. The Journal of Biological Chemistry269 (46): 28555–7. doi:10.1016/S0021-9258(19)61940-X. PMID7961800.
Takasawa S, Tohgo A, Noguchi N, Koguma T, Nata K, Sugimoto T, Yonekura H, Okamoto H (December 1993). “Synthesis and hydrolysis of cyclic ADP-ribose by human leukocyte antigen CD38 and inhibition of the hydrolysis by ATP”. The Journal of Biological Chemistry268 (35): 26052–4. doi:10.1016/S0021-9258(19)74275-6. PMID8253715.
Nata K, Takamura T, Karasawa T, Kumagai T, Hashioka W, Tohgo A, Yonekura H, Takasawa S, Nakamura S, Okamoto H (February 1997). “Human gene encoding CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase): organization, nucleotide sequence and alternative splicing”. Gene186 (2): 285–92. doi:10.1016/S0378-1119(96)00723-8. PMID9074508.
Feito MJ, Bragardo M, Buonfiglio D, Bonissoni S, Bottarel F, Malavasi F, Dianzani U (August 1997). “gp 120s derived from four syncytium-inducing HIV-1 strains induce different patterns of CD4 association with lymphocyte surface molecules”. International Immunology9 (8): 1141–7. doi:10.1093/intimm/9.8.1141. PMID9263011.
Ferrero E, Malavasi F (October 1997). “Human CD38, a leukocyte receptor and ectoenzyme, is a member of a novel eukaryotic gene family of nicotinamide adenine dinucleotide+-converting enzymes: extensive structural homology with the genes for murine bone marrow stromal cell antigen 1 and aplysian ADP-ribosyl cyclase”. Journal of Immunology159 (8): 3858–65. PMID9378973.
Deaglio S, Morra M, Mallone R, Ausiello CM, Prager E, Garbarino G, Dianzani U, Stockinger H, Malavasi F (January 1998). “Human CD38 (ADP-ribosyl cyclase) is a counter-receptor of CD31, an Ig superfamily member”. Journal of Immunology160 (1): 395–402. PMID9551996.
Yagui K, Shimada F, Mimura M, Hashimoto N, Suzuki Y, Tokuyama Y, Nata K, Tohgo A, Ikehata F, Takasawa S, Okamoto H, Makino H, Saito Y, Kanatsuka A (September 1998). “A missense mutation in the CD38 gene, a novel factor for insulin secretion: association with Type II diabetes mellitus in Japanese subjects and evidence of abnormal function when expressed in vitro”. Diabetologia41 (9): 1024–8. doi:10.1007/s001250051026. PMID9754820.
Overview of all the structural information available in the PDB for UniProt: P28907 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 1) at the PDBe-KB.