Bu madde, öksüz maddedir; zira herhangi bir maddeden bu maddeye verilmiş bir bağlantı yoktur. (Eylül 2022) |
Bethe formülü hızlı yüklü parçacıkların (protonlar, alfa parçacıkları, atomik iyonlar ama elektronlar değil[Dipnot 1]) malzeme (ya da durdurma gücü malzemesi) ile enerji kaybını açıklar. Yüksek hızlı yüklü parçacıklar maddenin içinde hareket ederken, malzemenin atomlarındaki elektronlarla etkileşirler, bu etkileşme atomu uyarır ya da iyonlaştırır. Bu durum hareket eden parçacığın enerji kaybetmesine yol açar.
Klasik olan, göreli olmayan ilk biçimi 1913 yılında Niels Bohr tarafından;[1] kuantum mekaniksel olan, göreli olmayan ilk biçimi 1930 yılında Hans Bethe tarafından[2] ortaya atıldı; 1932 yılında göreli etkileri temel alan deneysel verilerle tutarlı biçime sokuldu.[3] En olası enerji kaybı, ortalama enerji kaybından farklıdır ve bu Landau-Vavilov dağılımı ile tanımlanır.[4]
Bu alt başlığın genişletilmesi gerekiyor. Sayfayı düzenleyerek yardımcı olabilirsiniz. |
Formülün göreli biçimi:
|
|
(1) |
Burada;
parçacığın hızı | |
parçacığın enerjisi | |
yol mesafesi | |
ışık hızı | |
parçacığın yükü | |
temel yük | |
elektronun durgun kütlesi | |
malzemedeki elektronların sayı yoğunluğu | |
malzemenin ortalama uyarılma potansiyeli |
Burada, malzemenin elektron sayı yoğunluğu ile hesaplanabilir, burada malzemenin yoğunluğu, Z ve A sırasıyla atom numarası ve kütle numarası, = 1 g/mol molar kütle sabiti ve Avagadro sayısıdır.
Yandaki resimde, küçük daireler çeşitli yazarlardan elde edilen deneysel veriler (http://www.exphys.jku.at/Stopping/6 Şubat 2012 tarihinde Wayback Machine sitesinde arşivlendi. adresinden alındı); eğri ise Bethe formülünü göstermektedir. Bethe formülünün yüksek enerjilerdeki deneyler ile uyum içinde olduğu açıktır, özellikle düzeltmeler ilave edildiğinde.
Formül sıklıkla, Bloch yaklaşımını içermediği durumlarda bile Bethe-Bloch formülü olarak adlandırılır.
Küçük enerjiler için Bethe formülü şu şekilde basitleştirilebilir ;
|
|
(2) |
.
Bu nedenle, Bethe formülüne göre, enerji artarken durdurma gücü kabaca ile azalır. Yaklaşık 'de minimuma ulaşır, burada parçacığın kütlesidir (protonlar için 3000 MeV olabilir). Çok göreli enerjiler için, , enerji kaybı yine göreli bir şekilde artar.
Bethe formülü yalnızca yüklü parçacığa (iyon) atomik elektronlarla taşınmayan yeterince büyük enerjiler için geçerlidir. Daha küçük enerjilerde, elektron iyon kapısı durumundayken yük etkin bir şekilde azalır ve böylece durdurma gücü de azalır. Ancak parçacık tamamen iyonize olsa bile düzeltmeler gereklidir.
Bethe kuramında malzeme tek bir değer, ortalama uyarılma potansiyeli I ile ifade edilir. 1933 yılında Felix Bloch atomların ortalama iyonizasyon potansiyelinin yaklaşık şöyle olduğunu gösterdi;
|
|
(3) |
Burada Z malzeme atomlarının atom numarasıdır. Eğer bu yaklaşıklık yukarıdaki formüle (1) yerleştirilirse, Bethe-Bloch formülü olarak adlandırılan ifade elde edilir. Ama Z 'nin bir fonksiyonu olarak I tablolarımız tam olarak elimizde olduğundan (aşağıya bakınız) böyle bir tablonun kullanılması formülün (3) kullanımından daha iyi sonuçlar verecektir.
Şekil tablodan alınan normalize I değerlerini gösterir.[5] Bu şekildeki tepe ve çukurlar durdurma gücünde tepe ve çukurlara karşılık gelen bir yol açar. Bunlar "Z2 titreşimleri" veya "Z2 yapısı" (Burada Z2 = Z olup hedefin atom numarası anlamına gelir) olarak adlandırılır.
Bethe kuantum mekaniğinde bir pertürbatif genişleme kullanarak bir formül buldu. Dolayısıyla sonuç kare parçacığın yükü ile orantılıdır. Formül 'nin yüksek mertebelerine karşılık gelen düzeltmeleri göz önüne alarak zenginleştirilebilir. Bunlar: Barkas-Andersen etkisi ( ile orantılı, Walter H. Barkas ve Hans Henrik Andersen), Bloch düzeltmesi ( ile orantılı). Ek olarak, malzemenin atomik elektronlarının sabit olmadığını göz önünde tutmak gereklidir ("kabuk düzeltme").
Örneğin, tanıtılan bu düzeltmeleri PSTAR ve ASTAR programları proton ve alfa parçacıklarının durdurma gücünü hesaplamak için kullanır. (www.physics.nist.gov/PhysRefData/Star/Text/programs.html). Düzeltmeler düşük enerjilerde geniştir ve enerji arttıkça daha düşük hâle gelmektedir.
Çok yüksek enerjilerde Fermi yoğunluk düzeltmelerinin eklenmesi gereklidir.[5]