Định lý Wilson

Trong lý thuyết số, định lý Wilson phát biểu rằng: cho psố tự nhiên lớn hơn 1, khi đó p là số nguyên tố, khi và chỉ khi (p-1)!+1 chia hết cho p.

Mở rộng với số nguyên dương n lẻ, n>1 và thì

Lịch sử

[sửa | sửa mã nguồn]

Định lý này được khám phá lần đầu bởi Bhaskara I (600 - 680), sau được giải thích bởi Ibn al-Haytham (thường được gọi là Alhazen Thời Trung cổ) vào khoảng năm 1000, nhưng được đặt tên theo John Wilson (1741 - 1793), người đã phát biểu nó vào thế kỷ XVIII.[1] Lagrange là người đầu tiên đưa ra chứng minh cho định lý này năm 1773. Có bằng chứng cho thấy Leibniz cũng đã biết về định lý này, nhưng ông đã không công bố.

Chứng minh

[sửa | sửa mã nguồn]

"Nếu (p-1)!+1 chia hết cho p thì p là số nguyên tố" là điều hiển nhiên. Vì khi đó p sẽ nguyên tố cùng nhau với các số từ 1 đến p-1, do đó nó không có ước nào khác ngoài 1 và chính nó.

Chiều ngược lại ta phải chứng minh "nếu p là số nguyên tố thì (p-1)!+1 chia hết cho p".

Xét đa thức:

và:

.

Rõ ràng, phương trình p-1 nghiệm là 1,2,...,p-1.

Theo định lý Fermat nhỏ, có (p-1) nghiệm là 1,2,...,p-1.

Vậy, phương trình cũng có p-1 nghiệm là 1,2,...,p-1.

Mà đa thức f(x) có bậc nhỏ hơn p-1.

Do đó, theo định lý Lagrange, các hệ số của f(x) đồng dư với 0 theo module p.

Hệ số tự do của f(x) bằng (p-1)!+1. Suy ra điều phải chứng minh.

Mở rộng

[sửa | sửa mã nguồn]

Tổng quát hóa

[sửa | sửa mã nguồn]

Định lý trên có thể tổng quát hóa như sau:

Nếu có k số nguyên tố cùng nhau với n và nhỏ hơn n thì:
.

Mở rộng của Gauss

[sửa | sửa mã nguồn]

Mở rộng của Carl Friedrich Gauss:

Trong đó p là số nguyên tố lẻ bất kì, là số nguyên dương bất kì.

Tham khảo

[sửa | sửa mã nguồn]
  1. ^ O'Connor, John J.; Robertson, Edmund F., “Abu Ali al-Hasan ibn al-Haytham”, Bộ lưu trữ lịch sử toán học MacTutor, Đại học St. Andrews
Chúng tôi bán
Bài viết liên quan
Đấu thần vương Shion trong Tensei Shitara Slime Datta Ken
Đấu thần vương Shion trong Tensei Shitara Slime Datta Ken
Shion (紫苑シオン, lit. "Aster tataricus"?) là Thư ký thứ nhất của Rimuru Tempest và là giám đốc điều hành trong ban quản lý cấp cao của Liên đoàn Jura Tempest
Nhân vật Tsuyuri Kanao trong Kimetsu no Yaiba
Nhân vật Tsuyuri Kanao trong Kimetsu no Yaiba
Tsuyuri Kanao「栗花落 カナヲ Tsuyuri Kanao」là một Thợ Săn Quỷ. Cô là em gái nuôi của Kochou Kanae và Kochou Shinobu đồng thời cũng là người kế vị của Trùng Trụ Shinobu
[Homo Scachorum] Giỏi cờ vua hơn không đồng nghĩa với thông minh hơn
[Homo Scachorum] Giỏi cờ vua hơn không đồng nghĩa với thông minh hơn
Trong các bài trước chúng ta đã biết rằng vào thời kì Cờ vua Lãng mạn, cờ vua được coi như một công cụ giáo dục không thể chối cãi
Đấng tối cao Nishikienrai - Overlord
Đấng tối cao Nishikienrai - Overlord
Nishikienrai chủng tộc dị hình dạng Half-Golem Ainz lưu ý là do anh sử dụng vật phẩm Ligaments để có 1 nửa là yêu tinh nên có sức mạnh rất đáng kinh ngạc