Định lý cơ bản của giải tích


Định lý cơ bản của giải tích chỉ rõ mối quan hệ giữa 2 vấn đề trung tâm của giải tíchđạo hàmtích phân.

Nội dung của định lý gồm hai phần:

Phần thứ nhất

[sửa | sửa mã nguồn]

Cho f là một hàm số thực, liên tục trên một đoạn [a, b]. Hàm F xác định với mọi x thuộc [a, b] bởi công thức:

Khi đó, F liên tục trên đoạn [a, b], khả vi trên khoảng mở(ab), và

(đạo hàm theo x)

với mọi x thuộc (a, b).

Hệ quả

[sửa | sửa mã nguồn]

Định lý này thường được dùng để tính tích phân xác định của một hàm mà nguyên hàm của nó đã biết. Cụ thể, nếu ƒ là một hàm thực, liên tục trên [ab], và g là nguyên hàm của ƒ trên [ab], thì

Hệ quả đã giả thiết tính liên tục của ƒ trên toàn bộ đoạn [ab]. Phần thứ hai của định lý phát biểu kết quả mạnh hơn hệ quả này.

Phần thứ hai

[sửa | sửa mã nguồn]

Phần này thường được gọi là định lý Newton-Leibniz.

Cho f là một hàm số thực xác định trên đoạn [a, b] và tìm được nguyên hàm g của nó trên [ab], nói cách khác, ƒg là các hàm số sao cho với mọi x thuộc [ab],

Nếu f khả tích trên [ab] thì

Phần thứ hai mạnh hơn hệ quả đã nêu là vì nó không cần giả thiết ƒ là hàm liên tục.

Từ phần thứ nhất của định lý, ta nhận thấy nguyên hàm của ƒ luôn tồn tại khi ƒ liên tục, mặc dù trong nhiều trường hợp, nguyên hàm đó không biểu diễn được thông qua các hàm số sơ cấp quen thuộc.

Tham khảo

[sửa | sửa mã nguồn]
Chúng tôi bán
Bài viết liên quan
[Visual Novel] White Album 2 Tiếng Việt
[Visual Novel] White Album 2 Tiếng Việt
Đây là bài đầu tiên mà tôi tập, và cũng là bài mà tôi đã thuần thục
Lời Thì Thầm Của Trái Tim - Khúc ca dịu êm của tuổi trẻ
Lời Thì Thầm Của Trái Tim - Khúc ca dịu êm của tuổi trẻ
Trong những ngày ngoài kia là trận chiến căng thẳng, trong lòng là những trận chiến của lắng lo ngột ngạt
Giới thiệu Oshi no ko - Bị kẻ lạ mặt đâm chớt, tôi tái sinh thành con trai idol
Giới thiệu Oshi no ko - Bị kẻ lạ mặt đâm chớt, tôi tái sinh thành con trai idol
Ai sinh đôi một trai một gái xinh đẹp rạng ngời, đặt tên con là Hoshino Aquamarine (hay gọi tắt là Aqua cho gọn) và Hoshino Ruby. Goro, may mắn thay (hoặc không may mắn lắm), lại được tái sinh trong hình hài bé trai Aqua
Review cuốn sách I, Robot: The Illustrated Screenplay của Harlan Ellison
Review cuốn sách I, Robot: The Illustrated Screenplay của Harlan Ellison
I, Robot: The Illustrated Screenplay vốn ban đầu là một kịch bản do Harlan Ellison viết hồi cuối thập niên 70