Định lý luồng cực đại lát cắt cực tiểu

Định lý luồng cực đại lát cắt cực tiểu là một phát biểu trong ngành lý thuyết tối ưu hóa về các luồng cực đại trong các mạng vận tải (flow network). Định lý phát biểu rằng:

Lượng cực đại của một luồng bằng khả năng thông qua của một lát cắt tối thiểu.

Định nghĩa

[sửa | sửa mã nguồn]

Giả sử là một đồ thị có hướng hữu hạn và mỗi cung có một khả năng thông qua (một giá trị thực không âm). Ngoài ra, giả sử có hai đỉnh, đỉnh phát và đỉnh thu , đã được xác định.

Một lát cắt là một cách chia các nút mạng thành hai tập , sao cho thuộc tập thuộc . Do đó, trong một đồ thị có lát cắt có thể.

Khả năng thông qua của một lát cắt

,

Đó là tổng của các khả năng thông qua của tất cả các cung đi qua lát cắt, từ vùng tới vùng .

Ba điều kiện sau là tương đương:

  1. là một luồng cực đại trong đồ thị
  2. Mạng còn dư (residual network) không chứa đường tăng (augmenting path).
  3. với lát cắt nào đó.

Phác thảo chứng minh: Nếu có một đường tăng, ta có thể gửi luồng theo đó và thu được một luồng lớn hơn, do đó nó không thể là luồng cực đại, và ngược lại. Nếu không có đường tăng nào, ta chia đồ thị thành gồm các nút tới được từ trong mạng còn dư, và gồm các nút không tới được. Khi đó phải bằng 0. Nếu không, tồn tại một cung với , nhưng khi đó, từ lại đến được nên không thể nằm trong .

Một mạng với luồng cực đại và ba lát cắt cực tiểu

Hình bên phải là một mạng với các nút , và luồng cực đại là một luồng tổng từ nút phát tới nút thu có giá trị bằng 5. (Đây thực ra là luồng cực đại duy nhất ta có thể tìm thấy trong mạng này.)

Có ba lát cắt cực tiểu trong mạng. Đối với lát cắt , khả năng thông qua lát cắt là . Với nó là . Và với .

Lưu ý rằng không phải là một lát cắt cực tiểu, tuy trong luồng đã cho cả đều đầy. Đó là do trong mạng còn dư có một cung (r,q) với khả năng thông qua .

Lịch sử

[sửa | sửa mã nguồn]

Định lý này được chứng minh bởi P. Elias, A. Feinstein, và C.E. Shannon năm 1956, và cũng năm đó, nó được chứng minh một cách độc lập bởi L.R. Ford, Jr.D.R. Fulkerson. Tìm các luồng cực đại là một dạng bài toán quy hoạch tuyến tính đặc biệt, và định lý luồng cực đại lát cắt cực tiểu có thể được coi là một trường hợp đặc biệt của định lý đôi (duality theorem) cho quy hoạch tuyến tính.

Liên kết ngoài

[sửa | sửa mã nguồn]

Tiếng Việt:

Tiếng Anh:

Tham khảo

[sửa | sửa mã nguồn]
Chúng tôi bán
Bài viết liên quan
Tổng quan về Chu Du - Tân OMG 3Q
Tổng quan về Chu Du - Tân OMG 3Q
Chu Du, tự Công Cẩn. Cao to, tuấn tú, giỏi âm luật
6 cách để giao tiếp cho người hướng nội
6 cách để giao tiếp cho người hướng nội
Dù quan điểm của bạn có dị đến đâu, khác biệt thế nào hay bạn nghĩ là nó dở như thế nào, cứ mạnh dạn chia sẻ nó ra. Vì chắc chắn mọi người xung quanh cũng sẽ muốn nghe quan điểm của bạn
[Anime Review] Zankyou no Terror – Nhớ đến họ, những con người đã ngã xuống
[Anime Review] Zankyou no Terror – Nhớ đến họ, những con người đã ngã xuống
Zankyou no Terror là một phim nặng về tính ẩn dụ hình ảnh lẫn ý nghĩa. Những câu đố xoay vần nối tiếp nhau, những hành động khủng bố vô hại tưởng chừng như không mang ý nghĩa, những cuộc rượt đuổi giữa hai bên mà ta chẳng biết đâu chính đâu tà
Những chi tiết ẩn dụ khiến bạn thấy
Những chi tiết ẩn dụ khiến bạn thấy "Thiếu Niên Và Chim Diệc" hay hơn 10 lần
Những bộ phim của Ghibli, hay đặc biệt là “bố già” Miyazaki Hayao, luôn mang vẻ "siêu thực", mộng mơ và ẩn chứa rất nhiều ẩn dụ sâu sắc