Nhiệt động lực học |
---|
Sách |
Chu trình Brayton là một chu trình nhiệt động lực học, đặt tên theo George Brayton (1830-1892), một kỹ sư người Mỹ, người đã phát triển nó.
Năm 1872, Brayton đăng ký bằng sáng chế cho động cơ đốt trong mang tên "Ready Motor" ("Mô tơ Sẵn sàng"). Không giống với chu trình bốn thì của động cơ Otto hay động cơ Diesel, động cơ của Brayton dùng một xylanh nén khí riêng và một xylanh giãn nở riêng.
Ngày nay, chu trình Brayton là nguyên lý hoạt động của động cơ tuốc bin khí. Giống như với các động cơ đốt trong khác, chu trình Brayton là hệ mở, dù cho, trong nghiên cứu nhiệt động lực học, đôi khi có thể đặt giả thuyết rằng khí thải ra được dùng lại để ở đầu vào, để hệ tương đương với hệ kín.
Chu trình Brayton còn được biết đến với tên gọi chu trình Joule.
Động cơ với chu trình Brayton có ba thành phần:
Trong động cơ Brayton của thế kỷ 19, không khí được hút vào máy nén khí chạy bằng piston và xylanh, và quá trình nén có thể coi một cách lý tưởng là đẳng entropy. Khí nén được đưa sang buồng trộn để hòa với nhiên liệu, tạo áp suất không đổi (quá trình đẳng áp). Hỗn hợp khí nhiên liệu nóng và cao áp được đánh lửa trong buồng giãn nở và năng lượng trong phản ứng hóa học giữa không khí và nhiên liệu được giải phóng, làm hỗn hợp giãn nở, đẩy piston của buồng giãn nở; theo quá trình đẳng entropy. Một phần công năng sản sinh bởi buồng giãn nỏ được cung cấp cho máy nén khí, thông qua các tay quay [1].
Ngày nay chu trình Brayton được nhắc đến trong động cơ tuốc bin khí. Động cơ này cũng có ba phần:
Không khí được hút vào buồng nén, được làm tăng áp suất theo quá trình gần với đẳng entropy. Khí đã nén chạy sang buống đốt, nơi nhiên liệu được phun vào và đánh lửa, làm tăng nhiệt độ khí trong một quá trình đẳng áp, do buồng đốt mở thông cho dòng chảy vào và ra. Khí ở áp suất và nhiệt độ cao được giãn nở tại buồng giãn nở đẩy các cánh quạt của tuốc bin; theo quá trình giãn nở đẳng entropy. Một phần công năng cung cấp cho tuốc bin được dùng vào việc nén khí ở buồng nén khí.
Trên thực tế, quá trình nén khí và giãn nở không thực sự đẳng entropy; và công năng bị hao hụt trong các quá trình này làm giảm hiệu suất nhiệt động lực học của động cơ.
Công có ích do động cơ sinh ra được thể hiện bằng diện tích hình khép kín 1 – 2 – 3 – 4. Diện tích này càng lớn thì công có ích và hiệu suất càng lớn, để tăng diện tích này thì phải tăng áp suất sau máy nén của điểm 2;3 (áp suất của điểm 4;1 là áp suất môi trường không thể giảm xuống được) nên hiệu suất động cơ được quyết định bằng tỷ số nén. Việc tăng tỷ số nén giúp cải thiện hiệu suất và công suất của hệ thống Brayton.[2]
Các cải tiến sau có thể thực hiện để làm tăng hiệu suất của động cơ kiểu Brayton:
Ngoài ra, nhiệt lượng của khí thải cũng có thể dùng dùng cho mục đích khác, như hâm nóng nước trong các hệ thống vũ trụ. Chu trình Brayton cũng có thể được kết hợp với chu trình Rankine, tạo ra chu trình kết hợp có hiệu suất tổng cộng cao hơn.