Compact hóa

Trong toán họclý thuyết topo, compact hóa (phiên âm: compắc hóa, tiếng Anh: compactification) là một quá trình biến một không gian topo thông thường thành một không gian compact.[1] Không gian compact hay tập compact có những tính chất hữu ích như:

  • Tập compact thì đóng và bị chặn trong không gian mêtric.
  • Với mọi dãy có dãy con hội tụ trong một tập compact của không gian mêtric.
  • Các hàm liên tục trên không gian compact thì tồn tại giá trị lớn nhất và nhỏ nhất.

Một phương pháp thông dụng để compact hóa một không gian topo là "compact hóa một điểm" (one-point compactification) với định lý Alexandroff và tính chất compact địa phương.

Định nghĩa[2]

[sửa | sửa mã nguồn]

Một compact hóa của là một không gian compact sao cho đồng phôi với một không gian con trù mật của .

Ví dụ:

  • Tập compact hóa của tập .
  • Tập compact hóa của tập .

Compact hóa một điểm

[sửa | sửa mã nguồn]
Tập tin:One-point compactification.jpg
Compact hóa một điểm của khoảng mở và đường thẳng thực thì đồng phôi với . Compact hóa một điểm của một đĩa mở trong thì đồng phôi với mặt cầu .

Trong một vài trường hợp nhất định, ta có thể compact hóa một không gian không compact bằng việc thêm vào đó một điểm. Khi đó, ta gọi đó là compact hóa một điểm.

Ví dụ:

  • Một tập compact hóa một điểm của tập .
  • Một tập compact hóa một điểm của tập

Compact hóa một điểm Alexandroff

[sửa | sửa mã nguồn]

Cho là một không gian mà . Gọi , xác định một topo trên như sau:

Một tập mở trong :

  • là một tập con mở của ,
  • , với là một tập con đóng, compact của .

Với topo này, là compact và chứa như một không gian con. Nếu không compact thì trù mật trong được gọi là compact hóa Alexandroff của .

Ví dụ:

  • Compact hóa Alexandroff của .
  • Compact hóa Alexandroff của đường tròn tiếp xúc với nhau tại một điểm.[3]

Tính chất liên quan

[sửa | sửa mã nguồn]
  • là không gian nếu .
  • là không gian Hausdorff nếu là Hausdorff và compact địa phương.
  • Nếu đồng phôi với thì không gian Hausdorff compact hóa Alexandroff của sẽ đồng phôi với không gian Hausdorff compact hóa Alexandroff của . ()

Compact hóa Stone - Cech

[sửa | sửa mã nguồn]

Như đã nói, với topo thông thường, compact hóa Alexandroff của . Tuy nhiên, với một hàm cho bởi (Topologist's sine curve) là một hàm bị chặn và liên tục trên nhưng hoàn toàn không thể được mở rộng liên tục vào . Như vậy, với trường hợp này, compact hóa Alexandroff chưa bảo đảm tính liên tục của một hàm trên không gian compact hóa. Khi đó, phương pháp compact hóa Stone-Čech sau đây sẽ giải quyết được vấn đề nêu trên. Compact hóa Stone-Čech lần đầu xuất hiện trong một bài báo của Tychonoff (năm 1930) và sau đó được nói đến rõ ràng bởi Marshall Stone (năm 1937) và Eduard Čech (năm 1937).

Định nghĩa

[sửa | sửa mã nguồn]

Cho là một không gian topo, ký hiệu là tập các hàm liên tục bị chặn từ vào . Xét hàm sau

Nếu là chính tắc đầy đủ thì là một đồng phôi, nghĩa là là một phép nhúng. Trong trường hợp này, vì compact nên không gian con là compact. Khi đó, được gọi là compact hóa Stone - Cech của . Hơn nữa, nó là một không gian Hausdorff.

Tính chất liên quan[4]

[sửa | sửa mã nguồn]
  • Cho là một không gian compact Hausdorff thì với mỗi hàm liên tục, thì tồn tại duy nhất một hàm mở rộng liên tục của .
  • liên thông khi và chỉ khi là liên thông.
  • mở trong khi và chỉ khi là một không gian compact địa phương.

Tham khảo

[sửa | sửa mã nguồn]
  1. ^ Munkres, James R. (2000). Topology (ấn bản thứ 2). Prentice Hall. ISBN 0-13-181629-2.
  2. ^ Huỳnh, Quang Vũ (2012). Lecture notes on Topology. Ho Chi Minh city University of Science.
  3. ^ Dương, Minh Đức (2007). Giải Tích Hàm. Đại học Quốc gia Tp.HCM.
  4. ^ Wyckoff, James J. (1973). Compactifications. Kansas State Teachers College.
Chúng tôi bán
Bài viết liên quan
6 cách để giao tiếp cho người hướng nội
6 cách để giao tiếp cho người hướng nội
Dù quan điểm của bạn có dị đến đâu, khác biệt thế nào hay bạn nghĩ là nó dở như thế nào, cứ mạnh dạn chia sẻ nó ra. Vì chắc chắn mọi người xung quanh cũng sẽ muốn nghe quan điểm của bạn
Tổng hợp các thông tin về Thủy Quốc - Fontaine
Tổng hợp các thông tin về Thủy Quốc - Fontaine
Dưới đây là tổng hợp các thông tin chúng ta đã biết về Fontaine - Thủy Quốc qua các sự kiện, nhiệm vụ và lời kể của các nhân vật trong game.
Nhật Bản - Sự Trỗi Dậy Của Con Hổ Phương Đông?
Nhật Bản - Sự Trỗi Dậy Của Con Hổ Phương Đông?
BoJ đã chính thức trở thành ngân hàng cuối cùng trên thế giới nới lỏng chính sách tiền tệ cực kỳ lỏng lẻo khi quốc gia này đang phải đối mặt với hàng thập kỷ giảm phát.
Nhân vật Arisu Sakayanagi - Youkoso Jitsuryoku Shijou Shugi no Kyoushitsu e
Nhân vật Arisu Sakayanagi - Youkoso Jitsuryoku Shijou Shugi no Kyoushitsu e
Arisu Sakayanagi (坂さか柳やなぎ 有あり栖す, Sakayanagi Arisu) là một trong những lớp trưởng của lớp 2-A.