Giả thuyết Goormaghtigh

Trong toán học, giả thuyết Goormaghtighgiả thuyết trong lý thuyết số được đặt tên theo nhà toán học người Bỉ René Goormaghtigh. Giả thuyết phát biểu rằng nghiệm nguyên không tầm thường duy nhất của phương trình Diophantine mũ sau

thoả mãn

Các kết quả nhỏ

[sửa | sửa mã nguồn]

Davenport, Lewis & Schinzel (1961) đã chứng tỏ rằng, với mỗi cặp số mũ được cố định trước, phương trình này chỉ có hữu hạn số nghiệm. Tuy nhiên bài chứng minh này lại dựa trên định lý Siegel trên các điểm nguyên. Nesterenko & Shorey (1998) chứng minh thêm rằng, nếu với , , và , thì bị chặn bởi hằng số tính được hiệu quả phụ thuộc . Yuan (2005) đã chứng minh rằng khi lẻ, phương trình này không có nghiệm nguyên nào khác ngoài hai nghiệm kể trên.

Trong 1980, Balasubramanian và Shorey đã chứng minh rằng chỉ có hữu hạn số nghiệm cho phương trình với các ước nguyên tố nằm trong một tập hữu hạn cho trước và ta có thể tính hiệu quả kết quả này. He & Togbé (2008) chứng minh rằng khi cố định , thì phương trình này chỉ có tối đa một nghiệm. Nếu chỉ cố định một trong x (hoặc y), thì phương trình có tối đa 15 nghiệm, và chỉ có tối đa 2 trừ khi xluỹ thừa nguyên tố nhân với luỹ thừa hai, có tối đa 3 nghiệm khi nằm trong tập hữu hạn {15, 21, 30, 33, 35, 39, 45, 51, 65, 85, 143, 154, 713}. Hơn nữa, phương trình chỉ có tối đa một nghiệm khi phần lẻ của n là số bình phương đủ trừ trường hợp n có tối đa hai ước nguyên tố phân biệt hoặc n nằm trong tập hữu hạn {315, 495, 525, 585, 630, 693, 735, 765, 855, 945, 1035, 1050, 1170, 1260, 1386, 1530, 1890, 1925, 1950, 1953, 2115, 2175, 2223, 2325, 2535, 2565, 2898, 2907, 3105, 3150, 3325, 3465, 3663, 3675, 4235, 5525, 5661, 6273, 8109, 17575, 39151}.

Ứng dụng cho số repunit

[sửa | sửa mã nguồn]

Giả thuyết Goormaghtigh tương đương với phát biểu sau: số 31 (111 trong cơ số 5, 11111 trong cơ số 2) và số 8191 (111 trong cơ số 90, 1111111111111 trong cơ số 2) là hai số repunit duy nhất có ít nhất 3 chữ số trong hai hệ cơ số khác nhau.

Tham khảo

[sửa | sửa mã nguồn]
Chúng tôi bán
Bài viết liên quan
Nhân vật Bukubukuchagama (ぶくぶく茶釜) - Overlord
Nhân vật Bukubukuchagama (ぶくぶく茶釜) - Overlord
Bukubukuchagama là một trong chín thành viên đầu tiên sáng lập guid Ainz Ooal Gown và cũng là 1 trong 3 thành viên nữ của guid.
Chân dung Drew Gilpin Faust - Hiệu trưởng Đại học Harvard
Chân dung Drew Gilpin Faust - Hiệu trưởng Đại học Harvard
Đó là những lời khẳng định đanh thép, chắc chắn và đầy quyền lực của người phụ nữ đang gánh trên vai ngôi trường đại học hàng đầu thế giới
Công nghệ thực phẩm: Học đâu và làm gì?
Công nghệ thực phẩm: Học đâu và làm gì?
Hiểu một cách khái quát thì công nghệ thực phẩm là một ngành khoa học và công nghệ nghiên cứu về việc chế biến, bảo quản và phát triển các sản phẩm thực phẩm
Hướng dẫn build Kaeya - Genshin Impact
Hướng dẫn build Kaeya - Genshin Impact
Mặc dù Kaeya sở hữu base ATK khá thấp so với mặt bằng chung (223 ở lv 90 - kém khá xa Keqing 323 ở lv 90 hay Qiqi 287 ờ lv 90) nhưng skill 1 của Kaeya có % chặt to