Hàm số đơn điệu

Tính đồng biến (tăng) và tính nghịch biến (giảm) là các tính chất của một hàm số. Những hàm số tăng hoặc giảm trong một đoạn được gọi là đơn điệu trong đoạn đó. Với trường hợp tăng nghiêm ngặt hoặc giảm nghiêm ngặt thì được gọi là đơn điệu nghiêm ngặt.[1]

Thông thường để xác định tính chất đơn điệu của một hàm số người ta tìm đạo hàm của nó, nếu đạo hàm dương trong khoảng nào thì nó đồng biến trong khoảng đó, trong trường hợp âm thì ngược lại hàm số nghịch biến.[2]

Định nghĩa và tính chất

[sửa | sửa mã nguồn]

Kí hiệu K là khoảng, đoạn hoặc nửa khoảng.

Định nghĩa

[sửa | sửa mã nguồn]

Giả sử hàm số y= f(x) xác định trên K. Ta nói :

  • Hàm số y = f(x) đồng biến nghiêm ngặt (tăng ngặt) trên K nếu với mọi cặp , thuộc K mà nhỏ hơn thì nhỏ hơn , tức là : [3][4]
  • Hàm số y = f(x) nghịch biến nghiêm ngặt (giảm ngặt) trên K nếu với mọi cặp , thuộc K mà nhỏ hơn thì lớn hơn , tức là: [3][4]

Tính chất 1

[sửa | sửa mã nguồn]

Cho hàm số y=f(x) xác định và có đạo hàm trên K.

  • Nếu thì hàm số y=f(x) đồng biến trên K [5]
  • Nếu thì hàm số y=f(x) nghịch biến trên K [5]

Tính chất 2

[sửa | sửa mã nguồn]

Giả sử hàm số y=f(x) có đạo hàm trên K.

Nếu và f'(x)=0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến trên K

Nếu và f'(x)=0 chỉ tại một số hữu hạn điểm thì hàm số nghịch biến trên K

Tham khảo

[sửa | sửa mã nguồn]
  1. ^ Trần Văn Hạo và đồng nghiệp, Giải tích 12, tr. 4, phần Tính đơn điệu của hàm số
  2. ^ Trần Văn Hạo và đồng nghiệp, Giải tích 12, tr. 5, phần Tính đơn điệu và dấu của đạo hàm
  3. ^ a b Phan Đức Chính (2011) Toán 9, tập 1, tr. 44
  4. ^ a b Trần Văn Hạo (2010), tr. 36
  5. ^ a b Trần Văn Hạo và đồng nghiệp, Giải tích 12, tr. 6, Định lí thừa nhận

Thư mục

[sửa | sửa mã nguồn]
Chúng tôi bán
Bài viết liên quan
Story Quest là 1 happy ending đối với Furina
Story Quest là 1 happy ending đối với Furina
Dạo gần đây nhiều tranh cãi đi quá xa liên quan đến Story Quest của Furina quá, mình muốn chia sẻ một góc nhìn khác rằng Story Quest là 1 happy ending đối với Furina.
Nhân vật Tenka Izumo - Mato Seihei no Slave
Nhân vật Tenka Izumo - Mato Seihei no Slave
Tenka Izumo (出いず雲も 天てん花か, Izumo Tenka) là Đội trưởng Đội Chống Quỷ Quân đoàn thứ 6 và là nhân vật phụ chính của bộ manga Mato Seihei no Slave.
Đánh giá và hướng dẫn build Zhongli - Nham vương đế quân
Đánh giá và hướng dẫn build Zhongli - Nham vương đế quân
Hướng dẫn build Zhongli đầy đủ nhất, full các lối chơi
Điều gì làm nên sức mạnh của Alhaitham?
Điều gì làm nên sức mạnh của Alhaitham?
Tạm thời bỏ qua vấn đề DPS của cả đội hình, ta sẽ tập trung vào cơ chế và scaling của bản thân Alhaitham hơn