Hoa hướng dương (toán học)

Một bông hoa hướng dương trong toán học có thể được mô tả bằng một bông hoa thật. Nhân của hoa ứng với phần màu nâu ở giữa (nhị và nhụy), và mỗi tập hợp ứng với hợp của một cánh hoa và nhân

Trong toán học, một hoa hướng dương (còn gọi là Δ-hệ) là một nhóm các tập hợp sao cho giao của hai tập hợp bất kì trong chúng là một tập hợp cố định, gọi là nhân.

Bổ đề Δ, bổ đề hoa hướng dương, và giả thuyết hoa hướng dương nêu các điều kiện đủ để một nhóm các tập hợp có chứa một hoa hướng dương.

Ban đầu khái niệm này được gọi là "hệ Δ". Về sau, thuật ngữ "hoa hướng dương", có thể được đưa ra bởi Deza & Frankl (1981), dần dần thay thế nó.

Bổ đề Δ

[sửa | sửa mã nguồn]

Bổ đề Δ là một công cụ tổ hợp trong lý thuyết tập hợp. Một Δ-hệ, đặt là W, là một bộ các tập hợp sao cho giao của hai tập hợp bất kì trong chúng là như nhau. Nói cách khác, tồn tại tập hợp S gọi là nhân (có thể rỗng) sao cho với mọi A, B ∈ W với AB, A ∩ B = S.

Bổ đề Δ khẳng định rằng mọi bộ không đếm được các tập hợp hữu hạn đều chứa một Δ-hệ không đếm được.

Bổ đề và giả thuyết hoa hướng dương

[sửa | sửa mã nguồn]

Bổ đề hoa hướng dương, chứng minh bởi Erdős & Rado (1960, tr. 86), là một hình thức lượng hóa bổ đề Δ. Bổ đề khẳng định rằng với mọi số nguyên dương ab, mọi bộ gồm b!ab+1 tập hợp với lực lượng không quá b đều chứa một hoa hướng dương gồm a tập hợp. Vẫn chưa biết chặn trên chặt nhất thay vì b!ab+1 là gì. (Erdős & Rado 1960, tr. 86) giả thuyết rằng với mọi a cố định, đều tồn tại hằng số C=C(a) sao cho mọi bộ gồm Cb tập hợp với lực lượng không quá b đều chứa một hoa hướng dương gồm a tập hợp.

Tham khảo

[sửa | sửa mã nguồn]
  • Deza, M.; Frankl, P. (1981), “Every large set of equidistant (0,+1,–1)-vectors forms a sunflower”, Combinatorica. An International Journal of the János Bolyai Mathematical Society, 1 (3): 225–231, doi:10.1007/BF02579328, ISSN 0209-9683, MR637827
  • Erdős, Paul; Rado, R. (1960), “Intersection theorems for systems of sets”, Journal of the London Mathematical Society. Second Series, 35 (1): 85–90, doi:10.1112/jlms/s1-35.1.85, ISSN 0024-6107, MR0111692
  • Jech, Thomas (2003). Set Theory. Springer.
  • Kunen, Kenneth (1980). Set Theory: An Introduction to Independence Proofs. North-Holland. ISBN 0-444-85401-0.

Tham khảo

[sửa | sửa mã nguồn]
Chúng tôi bán
Bài viết liên quan
Nhân vật Sora - No Game No Life
Nhân vật Sora - No Game No Life
Sora (空, Sora) là main nam của No Game No Life. Cậu là một NEET, hikikomori vô cùng thông minh, đã cùng với em gái mình Shiro tạo nên huyền thoại game thủ bất bại Kuuhaku.
Chiori – Lối chơi, hướng build và đội hình
Chiori – Lối chơi, hướng build và đội hình
Như ta sẽ thấy, Chiori là nhân vật scale song song def và att. Mặc dù base att của cô cũng khá cao (top 11)
Giới thiệu nhân vật Evileye trong Overlord
Giới thiệu nhân vật Evileye trong Overlord
Keno Fasris Invern, trước đây được gọi là Chúa tể ma cà rồng huyền thoại, Landfall, và hiện được gọi là Evileye, là một nhà thám hiểm được xếp hạng adamantite và người làm phép thuật của Blue Roses cũng như là bạn đồng hành cũ của Mười Ba Anh hùng.
Một vài yếu tố thần thoại qua hình tượng loài quỷ trong Kimetsu no Yaiba
Một vài yếu tố thần thoại qua hình tượng loài quỷ trong Kimetsu no Yaiba
Kimetsu no Yaiba (hay còn được biết tới với tên Việt hóa Thanh gươm diệt quỷ) là một bộ manga Nhật Bản do tác giả Gotoge Koyoharu sáng tác và minh hoạ