I-đê-an chính

Trong toán học, cụ thể là lý thuyết vành, một i-đê-an chính là một i-đê-an trong một vành được sinh bởi một phần tử duy nhất thuộc .

Định nghĩa

[sửa | sửa mã nguồn]
  • một i-đê-an chính bên trái của là một tập hợp con của có dạng
  • một i-đê-an chính bên phải của là một tập hợp con của có dạng
  • một i-đê-an chính hai phía của là tập hợp con của tất cả các tổng hữu hạn của các phần tử có dạng , cụ thể là

Nếu là một vành giao hoán với đơn vị, ba khái niệm trên tương đương nhau. Trong trường hợp đó, người ta thường viết i-đê-an sinh bởi hoặc

Một miền nguyên mà trong đó mọi i-đê-an của nó đều là i-đê-an chính được gọi là một vành chính.[1]

Một vành (không nhất thiết phải là miền nguyên, hay thậm chí không nhất thiết phải là một vành giao hoán) mà trong đó mọi i-đê-an của nó đều là i-đê-an chính tạm thời không có tên gọi cụ thể. (Trong tiếng Anh, nó thường được gọi là một principal (ideal) ring[2], và một vành chính (mà là miền nguyên) được gọi là principal ideal domain[2] - trong một số tài liệu Pháp ngữ, một vành (mà không nhất thiết phải là miền nguyên) trong đó mọi i-đê-an đều là i-đê-an chính được gọi là một anneau quasi-principal[3], và một vành chính (mà là miền nguyên) được gọi là anneaux principal[4])

Chú thích

[sửa | sửa mã nguồn]
  1. ^ Nghiêm Xuân Cảnh (2008), Định nghĩa 1.4.1.3
  2. ^ a b Barile, Margherita, Weisstein, Eric W.
  3. ^ Bourbaki (2006), chương 7, §1, bài tập 6
  4. ^ Bourbaki (2006), VII.1.1

Tham khảo

[sửa | sửa mã nguồn]
  • Barile, Margherita, Weisstein, Eric W. "Principal Ring." From MathWorld—A Wolfram Web Resource. https://mathworld.wolfram.com/PrincipalRing.html
  • Bourbaki, Nicolas, (2006), Éléments de mathématique, Algèbre, Chapitre 4 à 7; Springer, (ISBN 978-3-540-34398-1)
  • Gallian, Joseph A. (2017). Contemporary Abstract Algebra (ấn bản thứ 9). Cengage Learning. ISBN 978-1-305-65796-0.
  • Nghiêm Xuân Cảnh (2008), Mô đun tự do trên vành chính, (Luận văn thạc sĩ toán học), Trường Đại Học Sư Phạm TP. Hồ Chí Minh
Chúng tôi bán
Bài viết liên quan
Ma Pháp Hạch Kích - 核撃魔法 Tensei Shitara Slime datta ken
Ma Pháp Hạch Kích - 核撃魔法 Tensei Shitara Slime datta ken
Ma Pháp Hạch Kích được phát động bằng cách sử dụng Hắc Viêm Hạch [Abyss Core], một ngọn nghiệp hỏa địa ngục được cho là không thể kiểm soát
Cảm nhận của cư dân mạng Nhật Bản về Conan movie 26: Tàu Ngầm Sắt Đen
Cảm nhận của cư dân mạng Nhật Bản về Conan movie 26: Tàu Ngầm Sắt Đen
Movie đợt này Ran đóng vai trò rất tích cực đó. Không còn ngáng chân đội thám tử nhí, đã thế còn giúp được cho Conan nữa, bao ngầu
Từ triết lý Ikigai nhìn về việc viết
Từ triết lý Ikigai nhìn về việc viết
“Ikigai – bí mật sống trường thọ và hạnh phúc của người Nhật” là cuốn sách nổi tiếng của tác giả người Nhật Ken Mogi
Con người rốt cuộc phải trải qua những gì mới có thể đạt đến sự giác ngộ?
Con người rốt cuộc phải trải qua những gì mới có thể đạt đến sự giác ngộ?
Mọi ý kiến và đánh giá của người khác đều chỉ là tạm thời, chỉ có trải nghiệm và thành tựu của chính mình mới đi theo suốt đời