Một mô hình xác suất đồ thị là một mô hình xác suất sử dụng đồ thị để biểu diễn phụ thuộc có điều kiện giữa các biến ngẫu nhiên một cách trực quan. Mô hình đồ thị được dùng phổ biến trong nhiều ngành như xác suất (đặc biệt là xác suất bayesian) và học máy.
Như trong lý thuyết đồ thị, đồ thị tương ứng của mô hình xác suất đồ thị bao gồm 1 tập đỉnh và 1 tập cạnh. Đặc biệt, ở đây một đỉnh biểu diễn một biến ngẫu nhiên trong khi một cạnh biểu diễn quan hệ tương quan của 2 đỉnh nối với nó (tương ứng là 2 biến ngẫu nhiên). Bằng cách này ta có thể biểu diễn một phân phối xác suất đồng thời (probability distribution) dựa theo cấu trúc của đồ thị.
Việc sử dụng này có nhiều ưu điểm, có thể kể ra như sau:
Có hai nhóm mô hình xác suất đồ thị chính bao gồm: Mạng Bayes biểu diễn quan hệ tương quan có chiều (nhân quả) thông qua một đồ thị có hướng (vì thế hay còn được gọi là mô hình đồ thị có hướng) và trường Markov ngẫu nhiên chỉ biểu diễn quan hệ tương quan mà không nêu rõ quan hệ nhân quả (tương ứng còn được gọi là mô hình đồ thị vô hướng).