Trong toán học và thống kê, một phân phối xác suất hay thường gọi hơn là một hàm phân phối xác suất là quy luật cho biết cách gán mỗi xác suất cho mỗi khoảng giá trị của tập số thực, sao cho các tiên đề xác suất được thỏa mãn. Theo thuật ngữ kỹ thuật, một phân phối xác suất là một độ đo xác suất (probability measure) mà miền xác định là đại số Borel trên tập số thực.
Mỗi biến ngẫu nhiên tạo ra một phân phối xác suất, phân phối này chứa hầu hết các thông tin quan trọng về biến ngẫu nhiên đó. Nếu X là một biến ngẫu nhiên, phân phối xác suất tương ứng gán cho đoạn [a, b] một xác suất P[a ≤ X ≤ b], nghĩa là, xác suất mà biến X sẽ lấy giá trị trong đoạn [a, b].
Phân phối xác suất của biến X có thể được mô tả một cách duy nhất bởi hàm phân phối tích lũy (cumulative distribution function) F(x) được định nghĩa như sau:
với mọi x thuộc R.
Một phân phối được gọi là rời rạc nếu hàm phân phối tích lũy của nó bao gồm một dãy các bước nhảy hữu hạn, nghĩa là nó sinh ra từ một biến ngẫu nhiên rời rạcX: một biến chỉ có thể nhận giá trị trong một tập hợp hữu hạn hoặc đếm được nhất định.
Một phân phối được gọi là liên tục nếu hàm phân phối tích lũy của nó là hàm liên tục, khi đó nó sinh ra từ một biến ngẫu nhiên X mà P[ X = x ] = 0 với mọi x thuộc R.
Phân phối liên tục còn có thể được biểu diễn bằng hàm mật độ xác suất: một hàm f không âm khả tích Lebesgue được định nghĩa trên tập số thực như sau:
với mọi a và b.
Không có gì đáng ngạc nhiên về việc các phân phối rời rạc không có một hàm mật độ như vậy, nhưng có các phân phối liên tục, như phân phối cầu thang của quỷ (devil's staircase), cũng không có mật độ.
Giá của một phân phối là một tập đóng nhỏ nhất mà các phần tử của nó có xác suất bằng 0.
Phân phối xác suất của tổng hai biến ngẫu nhiên độc lập là tích chập (convolution) của các phân phối của chúng.
Phân phối xác suất của hiệu hai biến ngẫu nhiên là tương quan chéo (cross-correlation) của các phân phối của chúng.
Phân phối Bernoulli là phân phối của biên ngẫu nhiên X lấy giá trị 1 với xác suất p và giá trị 0 với xác suất q = 1 − p.
Phân phối Rademacher là phân phối của biên ngẫu nhiên X lấy giá trị giá trị 1 với xác suất 1/2 và giá trị −1 với xác suất 1/2.
Phân phối nhị thức (binomial distribution) là phân phối của biên ngẫu nhiên X biểu diễn số lần thành công trong một dãy thí nghiệm độc lập, trong đó mỗi lần thử xác suất thành công là số p cố định.
Phân phối suy biến (degenerate distribution) tại x0 là phân phối của biên ngẫu nhiên X, trong đó X chắc chắn lấy giá trị x0. Phân phối này không có vẻ ngẫu nhiên, nhưng nó thỏa mãn định nghĩa về biến ngẫu nhiên. Nó có ích do nó đã đặt các biến tất định và các biến ngẫu nhiên trong cùng một dạng thức.
Phân phối đều rời rạc (discrete uniform distribution)là phân phối của biến ngẫu nhiên X trong đó X nhân giá trị trong một tập hữu hạn và X nhận giá trị bằng mỗi phần tử của tập đó với xác suất bằng nhau. Đây chính là phân phối xác suất của biên ngẫu nhiên X nhận được khi gieo một đồng xu cân bằng, một con súc sắc không lệch, một vòng roulette, hoặc khi tráo kỹ một bộ bài. Ngoài ra, người ta còn có thể sử dụng các đo đạc về các trạng thái lượng tử (quantum state) để sinh các biến ngẫu nhiên đều. Mọi thiết bị "vật lý" hay "cơ khí" đều có thể có lỗi thiết kế hoặc bị trục trặc, và phân phối đều là một mô tả gần đúng hành vi của chúng.
Phân phối siêu bội (hypergeometric distribution) là phân phối của biên ngẫu nhiên X biểu diễn số lần thành công trong m lần đầu tiên của một chuỗi n thực nghiệm độc lập, nếu cho trước tổng số lần thành công.
Phân phối Zipf: một phân phối quy tắc lũy thừa (power law) rời, ví dụ nổi tiếng nhất của nó là mô tả về tần số của các từ trong tiếng Anh.
Phân phối Boltzmann, một phân phối rời rạc quan trọng trong vật lý học thống kê. Nó mô tả xác suất của các mức năng lượng rời rạc của một hệ thống trong cân bằng nhiệt. Nó có một mô hình liên tục. Các trường hợp đặc biệt gồm có:
Phân phối hình học, là phân phối của biến ngẫu nhiên X rời rạc mô tả số thực nghiệm cần thiết để đạt đến thành công đầu tiên trong một dãy các thực nghiệm Có/Không độc lập.
Phân phối Beta trên đoạn [0,1], phân phối đều là trường hợp đặc biệt, hữu dụng cho việc ước lượng các xác suất thành công.
Phân phối đều liên tục trên đoạn [a,b]là phân phối của biên ngẫu nhiên X, trong đó X nhận giá trị trong các khoảng con hữu hạn độ dài bằng nhau với xác suất bằng nhau.
Hàm delta Dirac tuy không hoàn toàn là một hàm, là một dạng giới hạn của nhiều hàm xác suất liên tục. Nó biểu diễn một phân phối xác suất rời rạc tập trung tại 0 — một phân phối suy biến — (degenerate distribution) nhưng hệ thống biểu diễn đối xử với nó như thể nó là một phân phối liên tục.
Phân phối Kumaraswamy cũng hữu dụng như phân phối Beta nhưng có dạng đóng đơn giản cho cả hàm phân phối tích lũy và hàm phân phối xác suất.
Phân phối mũ, mô tả thời gian giữa các biến cố ngẫu nhiên hiếm gặp liên tiếp trong một quy trình không có bộ nhớ.
Phân phối F, là phân phối của tỉ lệ giữa hai biến ngẫu nhiên có phân phối chi-bình phương (đã chuẩn hóa), dùng trong phân tích phương sai (analysis of variance).
Phân phối Gamma, mô tả thời gian cho đến khi n biến cố ngẫu nhiên hiếm gặp liên tiếp xảy ra trong một quá trình không có bộ nhớ.
Phân phối Erlang, là trường hợp đặc biệt của phân phối Gamma với tham số hình dạng là số nguyên, được phát triển để dự đoán các thời gian đợi trong các hệ thống hàng đợi (queuing systems).
Phân phối chuẩn (normal distribution) còn gọi là phân phối theo đường cong Gauss, là phân phối của biên ngẫu nhiên X có hàm mật đọ là đường cong Gauss. Nó rất phổ biến trong thiên nhiên và thống kê do định lý giới hạn trung tâm (central limit theorem): mọi biến mà có thể được mô hình bằng tổng của nhiều biến độc lập đều là xấp xỉ chuẩn.
Phân phối Student, là phân phối của biên ngẫu nhiên biểu diễn giá trị trung bình chưa biết của phân phối Gauss.