Vết (đại số tuyến tính)

Trong đại số tuyến tính, vết (tiếng Anh: trace) của một ma trận vuông A bậc nxn được xác định bằng tổng các phần tử trên đường chéo chính (đường nối từ góc trên bên trái xuống góc dưới bên phải) của A [1].

với aii là ký hiệu phần tử ở hàng thứ i và cột thứ i của A. Tương đương với vết của ma trận là tổng của các trị riêng của nó, và nó bất biến khi thay đổi cơ sở. Sự đặc trưng hóa này có thể sử dụng để xác định vết cho các toán tử tuyến tính trong trường hợp tổng quát. Chú ý rằng, vết chỉ được định nghĩa cho một ma trận vuông.

Xét về ý nghĩa hình học, vết ma trận có thể được giải thích như là một sự thay đổi nhỏ của thể tích (như đạo hàm của định thức), và được miêu tả chính xác bằng công thức Jacobi..

Ký hiệu của nó thường là Sp hoặc Tr.

Gọi T là một toán tử tuyến tính biểu diễn bằng ma trận

Thì tr(T) = −2 + 1 − 1 = −2.

Tính chất

[sửa | sửa mã nguồn]

Liên hệ với các giá trị riêng

[sửa | sửa mã nguồn]

Vết của ma trận A bằng tổng các giá trị riêng của nó [2].

,

trong đó là giá trị riêng của A.

Tuyến tính

[sửa | sửa mã nguồn]

Cho A,B là các ma trận vuông cùng cấp và c là hằng số, khi đó:

,
.

Giao hoán

[sửa | sửa mã nguồn]

Cho A là ma trận m hàng n cột, còn B là ma trận n hàng và m cột, thì [2]:

. dù

Vết của ma trận liên hợp

[sửa | sửa mã nguồn]

Cho A là ma trận vuông cấp n bất kì, Cho P là ma trận vuông cấp n và khả nghịch. Liên hợp của A theo P, khi đó ta có:

,

có nghĩa là khi ta lấy liên hợp của ma trận thì vết của nó không thay đổi.

Vết của ma trận chuyển vị
[sửa | sửa mã nguồn]

Cho A là ma trận vuông cấp n bất kì, là ma trận chuyển vị của nó. Ta có:

.

Vết của tích ma trận đối xứng và ma trận phản đối xứng

[sửa | sửa mã nguồn]

Vết của tích ma trận đối xứngma trận phản đối xứng bằng 0. Có nghĩa là: Nếu A là ma trận đối xứng và B là ma trận phản đối xứng, thì:

.

Vết của ma trận lũy đẳng

[sửa | sửa mã nguồn]

Vết của ma trận lũy đẳng A (ma trận A sao cho A2 = A) bằng hạng của A.

Vết của ma trận lũy linh

[sửa | sửa mã nguồn]

Vết của ma trận lũy linh A bằng 0.

Chú thích

[sửa | sửa mã nguồn]
  1. ^ Nguyễn Hữu Việt Hưng, Đại số tuyến tính, Nhà xuất bản Đại học Quốc gia Hà Nội, trang 115.
  2. ^ a b Nguyễn Văn Hữu - Nguyễn Hữu Dư, Phân tích thống kê và dự báo, Nhà xuất bản Đại học Quốc gia Hà Nội, trang 27.

Tham khảo

[sửa | sửa mã nguồn]

Liên kết ngoài

[sửa | sửa mã nguồn]
Chúng tôi bán
Bài viết liên quan
Cái nhìn tổng quát về Kokomi - Genshin Impact
Cái nhìn tổng quát về Kokomi - Genshin Impact
Dựa vào một số thay đổi, hiện giờ nguồn sát thương chính của Kokomi sẽ không dựa vào Bake Kurage (kỹ năng nguyên tố/E) mà sẽ từ những đòn đánh thường
Trùng trụ Kochou Shinobu trong Kimetsu no Yaiba
Trùng trụ Kochou Shinobu trong Kimetsu no Yaiba
Kochou Shinobu「胡蝶 しのぶ Kochō Shinobu」là một Thợ Săn Quỷ, cô cũng là Trùng Trụ của Sát Quỷ Đội.
Nhân vật Anya Forger - ∎ SPY×FAMILY ∎
Nhân vật Anya Forger - ∎ SPY×FAMILY ∎
Một siêu năng lực gia có khả năng đọc được tâm trí người khác, kết quả của một nghiên cứu thuộc tổ chức nào đó
[Genshin Impact] Giới thiệu Albedo - Giả thuật sư thiên tài
[Genshin Impact] Giới thiệu Albedo - Giả thuật sư thiên tài
Chuyện kể rằng, một ngày nọ, khi đến Mondstadt, anh ấy nhanh chóng được nhận làm "Hội Trưởng Giả Kim Thuật Sĩ" kiêm đội trưởng tiểu đội điều tra