Bhaskara II | |
---|---|
Vida | |
Nacimientu | Bijapur[1], circa 1114[2] |
Muerte | Ujjain[1], 1185[2] (70/71 años) |
Familia | |
Padre | Maheśvara |
Oficiu | matemáticu, astrónomu, astrólogu |
Trabayos destacaos |
Lilāvati (en) Bijaganita (es) Siddhānta Shiromani (en) Karanakutuhala (en) |
voló hasta la planta de xazmín.
—Bhaskara
|
Bhāskara II (circa 1114, Bijapur – circa 1185, Ujjain), tamién conocíu como Bhaskara Acharia (Bhāskara-Ācārya), foi un matemáticu y astrónomu indiu. Conocíu por ser el creador de la fórmula cuadrática o resolvente.
en dellos idiomes modernos de la India (como'l bengalí, l'hindi, el marathi o'l pali) pronúnciase /bʱɔʃkɐɽ/ (según l'AFI) o /bóshkar/ (según una escritura español simplificada).
kara: ‘que fai' (ta rellacionáu cola pallabra sánscrita karma).
Etimoloxía: ‘el maestru Bhaskara'[4]
Nació cerca de Biyada Bida ―anguaño'l distritu de Bijapur, nel estáu de Karnataka (sur de la India)― y convirtióse en xefe del observatoriu astronómicu d'Ujjain, siguiendo la tradición matemática de Varaja Mijira y Brahma Gupta.
Bhaskara representa'l picu de la conocencia matemático y astronómico indiu nel sieglu XII. Algamó una conocencia de cálculu, astronomía, los sistemes de numberación y el resolución d'ecuaciones, que nun fuera algamáu niundes del mundu mientres dellos sieglos. Los sos principales trabayos fueron el Līlāvatī (sobre aritmética), Bījagaṇita (cuenta de raigaños, esto ye álxebra) y Siddhānta Shiromani (la xoya cimera de les conclusiones, escritu en 1150), que consta de dos partes: Golādhyāyá (capítulu sobre esferes); Grahagaṇita (conteo de los astro).[5]
Lilavati (‘la que tien diversión', la curiosa), el so llibru sobre aritmética, ye la fonte d'interesantes lleendes qu'afirmen que foi escritu pa la so fía, Lilavati. N'unu d'estos rellatos atopáu nuna traducción persa del Lilavati―, Bhaskara II dixo qu'estudiara l'horóscopu de la so fía casamentera Lilavati y predixo que si la so primer rellación sexual nun asocedía nel momentu astrolóxicu qu'él prefijara, el so home llueu morrería. Pa torgar esto, una hora antes del momentu asitió una taza con un pequeñu furacu na parte inferior d'una vasía rellena con agua, asitiada de manera que la taza fundir a la hora aparente pal sexu. Punxo'l mecanismu na habitación nupcial y avisó-y a Lilavati de nun averase. Sicasí, por cuenta del interés unu de les cualidaes negatives que los hinduistes atribúin a les muyeres―, ella foi a mirar el mecanismu y una perlla del so aru de la ñariz cayó por fuercia dientro, tapando'l furu y afectando el conteo. La rellación sexual tuvo llugar dempués del tiempu correutu y ella quedó vilba llueu. Dizse que, pa consolala nel so dolor ―una y bones la muyer hinduista vilba nun tien de volver a casase―, Bhaskara enseñó-y matemátiques y escribió esti llibru pa ella.
Delles contribuciones de Bhaskara a les matemátiques son les siguientes:
Bhaskara II llegó a la siguiente conclusión con al respective de la división per cero: «Unu estremáu cero ye igual a infinitu» yá que p'algamar la unidá haber de recurrir siempres a un divisor fraccional más pequeñu, una vegada realizada la división el restu haber d'estremar siempres por un divisor más pequeñu.