Die Laser Interferometer Space Antenna (LISA) ist ein Projekt der Europäischen Weltraumorganisation zur Einrichtung eines interferometrischen Gravitationswellendetektors im All. Drei Satelliten sollen 2035 mit einer Ariane-6-Rakete gestartet werden und ein Dreieck mit 2,5 Millionen Kilometern Seitenlänge bilden, um mit Laserinterferometern nach Gravitationswellen zu suchen.[1]
Das Projekt wurde gemeinsam von der ESA und der NASA begonnen, jedoch beendete die NASA ihre Beteiligung 2011 wegen Haushaltskürzungen.
Ein internationales Wissenschaftler-Konsortium hatte auf der Basis von LISA das Projekt Evolved Laser Interferometer Space Antenna (eLISA) entwickelt, um nach dem NASA-Ausstieg die Kosten zu senken. Der ursprüngliche Plan für LISA sah 5 Millionen Kilometer lange Arme vor. Die Länge der Arme wurde auf 2,5 Millionen Kilometer reduziert, die Satelliten wären mit Sojus-Raketen ins All gebracht worden und eLISA/NGO wäre, um Treibstoff zu sparen, nicht abgebremst worden, sondern wäre von der Erde weggeflogen und hätte somit nur für maximal 6 Jahre arbeiten können.[2]
Das eLISA/NGO-Projekt wurde im Januar 2012 als einer von drei Kandidaten für das Cosmic-Vision-Programm eingereicht.[2] Im Mai 2012 entschied die ESA jedoch, dass nicht eLISA/NGO, sondern das JUICE-Projekt vorrangig weiter verfolgt wird.[3] Am 5. Mai 2013 stellte die ESA zwei weitere sogenannte „Large-Class Missions“ in Aussicht. Die Bewertung zu eLISA/NGO fiel am 28. November 2013 positiv aus.[4][5] Unter der Bezeichnung New Gravitational wave Observatory (NGO)[6] wurde das Projekt von der ESA als L3-Mission unter dem Thema „Das gravitative Universum“ in die weiteren Planungen aufgenommen.[5][7]
Nachdem 2015 LIGO die lokale Messbarkeit von Gravitationswellen bewiesen hatte und 2016 die ESA-Mission LISA Pathfinder wichtige Techniken für die späteren Satelliten testen konnte, wurde das Projekt erweitert und wieder in LISA umbenannt. 2017 wählte die ESA einen überarbeiteten LISA-Vorschlag für eine Designstudie aus. Er wurde im Juni 2017 als Large-Class Mission in das Wissenschaftsprogramm der ESA aufgenommen. Ebenfalls 2017 entschied die ESA, weitgehend den ursprünglichen Plan für LISA umzusetzen.[8] Eine erste Überprüfung des gesamten Konzepts wurde im Januar 2018 abgeschlossen und verlief positiv, der Weg zur Entwicklung der Technologie war damit frei. Im April 2022 wurde der Übergang in die Phase B1 mit der Festlegung des endgültigen Designs und der Entwicklung aller noch notwendigen Technologien begonnen. In dieser Zeit konnten auch eventuelle Abkommen für die Beteiligung und Beiträge anderer Weltraumorganisationen beschlossen werden.[9] Im Januar 2024 wurde die Mission zur Realisierung angenommen. Der Start ist für 2035 anvisiert.[1]
Das Ziel des Projekts ist die Messung von Gravitationswellen, die den Detektor durchlaufen. LISA wird am empfindlichsten im Frequenzbereich zwischen 0,1 mHz und 1 Hz sein. Für die Erfassung solcher niederfrequenter und langwelligen Signale ist die Länge der Arme des Interferometers entscheidend, sowie der weitgehende Ausschluss von Störfaktoren, wie sie auf der Erdoberfläche vorkommen. Es unterscheidet sich darin von auf der Erde installierten Detektoren, die nur höhere Frequenzen untersuchen können.
LISA wird für Gravitationswellen von superschweren Schwarzen Löchern in einem großen Teil des beobachtbaren Universums empfindlich sein und somit wesentlich empfindlicher sein als die bisherigen Detektoren wie LIGO. Eventuell werden auch diejenigen Wellen nachweisbar sein, die vom Urknall stammen. Auch sollen möglicherweise Veränderungen der Raumzeit bei HM Cancri gemessen werden können.
Mit der Mission LISA Pathfinder (LPF) von 2015 bis 2017 wurden Schlüsseltechnologien für LISA getestet. Die Messgenauigkeit übertraf dabei die Anforderungen um das Fünffache. Das Herzstück von LISA Pathfinder wurde an der University of Glasgow getestet. Die Funktion einer weiteren Schlüsseltechnologie wurde mittels GRACE-FO getestet.
Die Planung für LISA besteht aus einer Anordnung von drei Raumsonden, die in Form eines nahezu gleichseitigen Dreiecks hinter der Erde entlang der Erdbahn um die Sonne kreisen. Der Abstand zur Erde beträgt dabei etwa 50 Millionen Kilometer.[10] Die Satelliten bilden zusammen ein Laserinterferometer mit Armlängen von 2,5 Millionen Kilometern.