Unha serpina (en branco) co seu 'bucle do centro reactivo' (azul) unido a unha protease (gris). Unha vez que a protease intenta a catálise será inhibida irreversiblemente. (PDB1K9O)
A inhibición de proteases feita polas serpinas controla un conxunto de procesos biolóxicos, como a coagulación e a inflamación, e consecuentemente estas proteínas son o obxectivo dunha intensa investigación médica.[10] O seu cambio conformacional peculiar tamén espertou o interese no eido da bioloxía estrutural e pregamento de proteínas.[7][8] Os mecanismos de cambio conformacional danlles certas vantaxes, pero tamén teñen inconvenientes: as serpinas son vulnerables a mutacións que poden resultar en serpinopatías como o pregamento incorrecto de proteínas e a formación de polímeros de cadea longa inactivos.[11][12] A polimerización das serpinas non só reduce a cantidade de inhibidor activo, senón que tamén causa a acumulación dos polímeros, orixinando morte celular e insuficiencia orgánica.[10]
Informouse por primeira vez da actividade inhibitoria da protease no plasma sanguíneo a finais do século XIX,[13] pero ata a década de 1950 non se illaron as serpinas antitrombina e alfa1 antitripsina,[14] co recoñecemento posterior da súa estreita homoloxía en 1979.[15][16] Quedou claro que pertencían a unha nova familia proteica cando se comprobou o seu aliñamento coa proteína non inhibitoria da clara do ovo ovoalbumina, dando lugar á chamada superfamilia proteica alfa1-antitripsina-antitrombina III-ovalbumina de inhibidores da serina protease,[17] pero foi despois renomeada de forma máis breve como superfamilia das Serpinas.[18] A caracterización inicial da nova familia centrouse na alfa1-antitripsina, unha serpina presente nunha alta concentración no plasma sangíneo, cuxa mutación pode orixinar un trastorno xenético común que se considera a causa da predisposición á enfermidade pulmonar enfisema[19] e á cirrose hepática.[20] A identificación das mutacións S e Z[21][22] responsables da deficiencia xenética e os posteriores aliñamentos de secuencias da alfa1-antitripsina e a antitrombina en 1982 levaron ao recoñecemento das estreitas homoloxías dos sitios activos das dúas proteínas,[23][24] centrados nunha metionina[25] na alfa1-antitripsina como inhibidor da elastase tisular, e na arxinina na antitrombina[26] como inhibidor da trombina.[27]
O papel fundamental do residuo do centro activo para determinar a especificidade da inhibición das serpinas foi confirmado inequivocamente polo descubrimento de que unha mutación natural que afectaba a metionina do centro activo na alfa1-antitripsina, que se cambiaba por arxinina (como na antitrombina), tiña como resultado un grave trastorno hemorráxico.[28] Esta especificidade de centro activo da inhibición era tamén evidente nas moitas familias de inhibidores da protease[7] pero as serpinas diferían delas en que eran proteínas moito máis grandes e tamén en que posuían o que se descubriu pouco despois como unha capacidade inherente para experimentar cambios de forma. A natureza deste cambio conformacional revelouse coa determinación en 1984 da primeira estrutura cristalina dunha serpina, a da alfa1-antitripsina post-clivaxe.[29] Isto xunto coa posterior resolución da estrutura da ovoalbumina nativa (non clivada)[30] indicou que o mecanismo inhibitorio das serpinas implicaba un notable cambio conformacional, no cal se producía o movemento do bucle peptídico exposto que contén o sitio reactivo e a súa incorporación como unha febra que quedaba en posición intermedia na folla beta-pregada principal que caracteriza a molécula de serpina.[31][32] As primeiras evidencias do papel esencial do movemento deste bucle no mecanismo inhibitorio procederon do descubrimento de que incluso aberracións menores nos residuos de aminoácidos que forman a bisagra por onde se move na antitrombina tiñan como resultado unha enfermidade trombótica.[31][33] A confirmación final do desprazamento ligado da protease diana por causa deste mvemento do bucle proporcionouna en 2000 ocoñecemento da estrutura do complexo post-inhibitorio da alfa1-antitripsina con tripsina,[6] mostrando como o desprazamento resulta na deformación e inactivación da protease unida. Estudos estruturais posteriores revelaron unha vantaxe adicional do mecanismo conformacional[34] para permitir a modulación sutil da actividade inhibitoria, como se viu en particular a nivel tisular[35] coas serpinas funcionalmene diversas do plasma humano.
Ata agora identificáronse unhas 1000 serpinas, incluíndo 36 proteínas humanas, así como moléculas en todos os reinos da vida (animais, plantas, fungos, bacterias e arqueas) e nalgúns virus (Poxviridae).[36][37][38] A característica central de todos é unha armazón estreitamente conservada, que permite o aliñamento preciso dos seus compoñentes estruturais e funcionais baseados na estrutura molde da alfa1-antitripsina.[39] Na década de 2000, presentouse unha nomenclatura sistemática para categorizar os membros da superfamilia da serpina baseada nas súas relacións evolutivas.[1] As serpinas son, polo tanto, a superfamilia máis grande e diversa de inhibidores de proteases.[40]
Aproximadamente dous terzos das serpinas humanas realizan funcións extracelulares, inhibindo as proteases na circulación sanguínea para modular as súas actividades. Por exemplo, as serpinas extracelulares regulan os cadoiros proteolíticos esenciais para a coagulación do sangue (antitrombina), as respostas inflamatorias e inmunes (antitripsina, antiquimotripsina e o inhibidor de C1) e remodelación de tecidos (PAI-1).[9] Ao inhibiren as proteases de cadoiros de sinalización, poden tamén afectar o desenvolvemento.[48][49] A táboa das serpinas humanas (abaixo) proporciona exemplos do rango de funcións realizadas polas serpinas humanas, así como algunhas das enfermidades que resultan da deficiencia de serpinas.
As proteases que son diana das serpinas inhibitorias intracelulares foron difíciles de identificar, xa que moitas destas moléculas parecen realizar funcións solapadas. Ademais, moitas serpinas humanas carecen de equivalentes funcionais precisos en organismos modelos como o rato. Non obstante, unha función importante das serpinas intracelulares pode ser protexer contra a actividade inapropiada das proteases dentro da célula.[50] Por exemplo, unha das serpinas humanas mellor caracterizadas é Serpina B9, que inhibe a protease grancima B dos gránuloscitotóxicos. Facendo isto, a Serpina B9 pode protexer contra a liberación inadvertida de grancima B e a activación prematura ou non desexada das vías de morte celular.[51]
Algúns virus usan as serpinas para interferir coas funcións das proteases do seu hóspede. A serpina viral da varíola das vacas CrmA (modificador da resposta de citocinas A) utilízase para evitar as respostas inflamatorias e apoptóticas de células hóspede infectadas. A CrmA incrementa a infectividade ao suprimir a resposta inflamatoria do hóspede por medio da inhibición do procesamento da IL-1 e IL-18 pola cisteína protease caspase-1.[52] En eucariotas, unha serpina de plantas inhibe ambas as metacaspases[53] e unha cisteína protease similar á papaína.[54]
Algunhas serpinas son á vez inhibidores da protease e realizan funcións adicionais. Por exemplo, o inhibidor da cisteína protease nuclear MENT, en aves tamén actúa como molécula remodeladora da cromatina nos eritrocitos de aves.[46][59]
O estado nativo das serpinas está en equilibrio entre un estrado completamente estresado (esquerda) e un estado parcialmente relaxado (dereita). A folla A de cinco febras (azul claro) contén dúas importantes rexións funcionais para o mecanismo da serpina, a fisura (breach na imaxe) e a persiana (shutter). O bucle do centro reactivo (RCL, azul) está nun equilibrio dinámico entre a conformación totalmente exposta (aberta) e a conformación na que está parcialmente inserida na fisura da folla A (dereita).(PDB1QLP)[60][61]
Todas as serpinas comparten unha estrutura (ou pregamento) común, malia as variadas funcións que teñen. Todas teñen caracteristicamente tres follas β (denominadas A, B e C) e oito ou nove hélices α (denominadas hA–hI).[29][30] As rexións máis significativas para a función das serpinas son a folla A e o bucle do centro reactivo (RCL). A folla A inclúe dúas febras β que están nunha orientación paralela cunha rexión entre elas chamada a "persiana" (shutter), e unha rexión superior chamada a "fisura" (breach). O RCL forma a interacción inicial coa protease diana en moléculas inhibitorias. Resolvéronse algunhas estruturas que mostraban o RCL completamente exposto ou parcialmente inserido na folla A, e pénsase que as serpinas están en equilibrio dinámico entre estes dous estados.[8] O RCL só establece interaccións temporais co resto da estrutura, e é, polo tanto, moi flexible e está exposto ao solvente.[8]
As estruturas que se determinaron das serpinas son de varias conformacións diferentes, o cal foi necesario para o coñecemento do seu mecanismo de acción de varios pasos. A Bioloxía estrutural exerceu un papel fundamental no coñecemento da función e bioloxía das serpinas.[8]
As serpinas inhibitorias non inhiben as súas proteases diana polo típico mecanismo de inhibición competitiva (pechadura e chave) usado pola maioría dos inhibidores de proteases pequenos (por exemplo, inhibidores de tipo Kunitz). En vez diso, as serpinas usan un cambio conformacional pouco común, que distorsiona a estrutura da protease e impide que complete a súa catálise. O cambio conformacional implica que o RCL se mova ao extremo oposto da proteína e se insira na folla β A, formando unha fibra β extra antiparalela. Isto cambia a serpina desde o estado estresado ao estado relaxado de baixa enerxía (transición de S a R).[7][8][62]
As serina proteases e cisteína proteases catalizan a rotura do enlace peptídico nun proceso en dúas etapas. Inicialmente, o residuo catalítico da tríade do sitio activo realiza un ataque nucleófilo no enlace peptídico do substrato. Isto libera o novo N-terminal e forma un enlace éstercovalente entre o encima e o substrato.[7] Este complexo covalente entre encima e substrato chámase intermediario acil-encima. Para substratos estándar, o enlace éster é hidrolizado e o novo C-terminal libérase para completar a catálise. Porén, cando unha serpina é cortada por unha protease, rapidamente sofre a transición de S a R antes de que o intermediario acil-encima se hidrolice.[7] A eficiencia da inhibición depende de que a velocidade cinética relativa do cambio conformacional é varias ordes de magnitude máis rápida que a hidrólise pola protease.
Como o RCL aínda está ligado covalentemente á protease polo enlace éster, a transición de S a R empurra a protease desde a parte superior á inferior da serpina e distorsiona a tríade catalítica. A protease distorsionada só pode hidrolizar o intermediario acil-encima de maneira extremadamente lenta e así a protease permanece ligada covalentemente por días ou semanas.[6] As serpinas clasifícanse como inhibidores irreversibles e como inhibidores suicidas, xa que cada proteína serpina inactiva permanentemente unha soa protease e só pode funcionar unha vez.[7]
Cambio conformacional e mecanismo das serpinas
O mecanismo inhibitorio das serpinas implica un gran cambio conformacional (transición de S a R). A serpina (branca) únese primeiro a unha protease (gris) co bucle co centro reactivo exposto (azul). Cando a protease corta este bucle, insírese rapidamente na folla A (azul claro), deformando e inhibindo a protease. (PDB1K9O)
As serina proteases e cisteína proteases operan por medio dun mecanismo catalítico en dúas etapas. Primeiro, o substrato (azul) é atacado pola cisteína ou a serina da tríade catalítica (vermello) para formar un intermediario acil-encima. Para substratos típicos, o intermediario resólvese por hidrólise pola auga. Porén, cando se ataca ao bucle do centro reactivo (RCL) dunha serpina, o cambio conformacional (frecha azul) empurra a tríade catalítica fóra da súa posición, impedíndolle que complete a catálise. (Baseado en PDB1K9O)
Algunhas serpinas son activadas por cofactores. A serpina antitrombina ten un RCL (azul) no que a arxinina P1 (barras azuis) apunta cara ao interior, o que impide que a protease se una. A unión da heparina (barras verdes) causa que o residuo de arxinina P1 cambie a unha posición exposta. Entón, a protease diana (gris) únese tanto á arxinina P1 exposta coma á heparina. Despois, a serpina actívase e a heparina libérase. (PDB1TB6)
A mobilidade conformacional das serpinas proporciona unha vantaxe clave sobre os inhibidores da protease de pechadura e chave estáticos.[34] En concreto, a función das serpinas inhibitorias pode ser regulada por interaccións alostéricas con cofactores específicos. As estruturas cristalinas de raios X da antitrombina, cofactor II da heparina, MENT e a antiquimotripsina murina revelan que estas serpinas adoptan unha conformación na que os primeiros dous aminoácidos do RCL se insiren na parte superior da folla β A. A conformación parcialmente inserida é importante porque algúns cofactores poden cambiar conformacionalmente certas serpinas parcialmente inseridas a unha forma completamente expulsada.[63][64] Este rearranxo conformacional fai que as serpinas sexan uns inhibidores máis efectivos.
O exemplo arquetípico desta situación é a antitrombina, que circula no plasma nun estado relativamente inactivo inserido parcialmente. A especificidade primaria que determina o residuo (a arxinina P1) apunta cara ao corpo da serpina e non queda dispoñible para a protease. Despois de unirse a unha secuencia pentasacárida de alta afinidade da heparina de cadea longa, a antitrombina sofre un cambio conformacional, a expulsión do RCL e a exposición da arxinina P1. A forma unida ao pentasacárido da heparina da antitrombina é, así, un inhibidor máis efectivo da trombina e o factor Xa.[65][66] Ademais, ambas as proteases da coagulación mencionadas conteñen tamén sitios de unión (chamados exositios) para a heparina. Polo tanto, a heparina tamén actúa como molde que se une tanto á protease coma á serpina, o que acelera drasticamente a interacción entre as dúas partes. Despois da interacción inicial, o complexo da serpina final está formado e o residuo de heparina é liberado. Esta interacción é fisioloxicamente importante. Por exemplo, despois dunha lesión nas paredes dos vasos sanguíneos, a heparina queda exposta e a antitrombina é activada para controlar a resposta coagulatoria. A comprensión das bases moleculares desta interacción permitiu o desenvolvemento do Fondaparinux, unha forma sintética do pentasacárido da heparina usada como fármaco anticoagulante.[67][68]
Algunhas serpinas poden converterse espontaneamente a un estado latente inactivo. A serpina PAI-1 permanece na conformación activa cando se une á vitronectina (verde). Porén, en ausencia da vitronectina, a PAI-1 pode cambiar ao estado latente inactivo. O RCL non clivado (azul; rexións desordenadas sinaladas con liñas descontinuas) insírese na folla A, empurrando a febra β fóra da folla C (amarelo). (PDB1OC0)
Certas serpinas sofren espontaneamente a transición de S a R sen que fosen previamente cortadas por unha protease, para formar unha conformación denominada estado latente. As serpinas latentes non poden interaccionar con proteases, polo que xa non son inhibidores da protease. O cambio conformacional á latencia non é exacteamente o mesmo que a transcición de S a R dunha serpina clivada. Como o RCL aínda está intacto, a primeira febra da folla C ten que "pelarse" ou separarse para permitir a inserción completa do RCL.[69]
A regulación da transición á latencia poden actuar como un mecanismo de control nalgunhas serpinas, como a PAI-1. Aínda que a PAI-1 se produce na conformación S inhibitoria, "autoinactívase" polo cambio ao estado latente a menos que se una ao cofactor vitronectina.[69] De xeito similar, a antitrombina pode tamén converterse espontaneamente ao estado latente, como un mecanismo de modulación adicional para a súa activación alostérica pola heparina.[70] Finalmente, cómpre o N-terminal da tengpina, unha serpina de Thermoanaerobacter tengcongensis, para bloquear a molécula no estado inhibitorio nativo. A distorsión das interaccións feitas pola rexión N-terminal ten como resultado un cambio conformacional espontáneo desta serpina á conformación latente.[71][72]
Cambio conformacional en funcións non inhibitorias
Certas serpinas non inhibitorias tamén usan o cambio conformacional como parte do seu funcionamento. Por exemplo, a forma nativa (S) da globulina fixadora da tiroxina ten unha alta afinidade pola tiroxina, mentres que a forma clivada (R) ten baixa afinidade. De xeito similar, a transcortina ten unha maior afinidade polo cortisol cando está no seu estao nativo (S) que cando está no estado clivado (R). Deste modo, nestas serpinas, a clivaxe do RCL e a transición de S a R foron utilizadas para permitir a liberación do ligando en lugar de para a inhibición da protease.[55][56][73]
Nalgunhas serpinas, a transición de S a R pode activar eventos de sinalización celular. Nestes casos, unha serpina que formou un complexo coa súa protease diana, é despois recoñecida por un receptor. O evento de unión despois acaba orixinando a sinalización augas abaixo polo receptor.[74] A transición de S a R é, polo tanto, usada para alertar as células da presenza da actividade de protase.[74] Isto difire do mecanismo usual no que as serpinas afectan a sinalización simplemente por inhibiren as proteases implicadas no cadoiro de sinalización.[48][49]
Cando unha serpina inhibe unha protease diana, forma un complexo permanente que debe ser eliminado. Para as serpinas extracelulares, os complexos finais serpina-encima son retirados rapidamente da circulación. Un mecanismo polo cal isto ocorre en mamíferos é por medio da proteína relacionada co receptor da lipoproteína de baixa densidade (LRP), que se une a complexos inhibitorios creados pola antitrombina, a PA1-1 e a neuroserpina, causando a súa captación celular.[74][75] De maneira semellante, a serpina necrótica de Drosophila degrádase no lisosoma despois de ser transportada á célula polo receptor de lipoforina-1 (homólogo da familia do receptor de LDL de mamíferos).[76]
As serpinas están envolvidas nunha ampla variedade de funcións fisiolóxicas, e por iso as mutacións nos xenes que os codifican poden causar diversas doenzas. As mutacións que cambian a actividade, especificidade ou propiedades de agregación das serpinas afectan como estas funcionan. A maioría das doenzas relacionadas coas serpinas son o resultado da polimerización das serpinas en agregados, aínda que tamén ocorren outros tipos de mutacións ligadas a enfermidades.[8][77] O trastorno deficiencia de alfa1 antitripsina é unha das enfermidades hereditarias máis comúns.[11][78]
A conformación δ inactiva do mutante da antiquimotripsina ligado a enfermidades (L55P). Catro residuos do RCL (azul; rexión desordenada representada con liñas descontinuas) están inseridos na parte superior da folla A. Parte da hélice α F (amarelo) desenrolouse e encheu a metade inferior da folla A. (PDB1QMN)
Como o pregamento de serpina estresado é de alta enerxía, as mutacións poden causar que cambien incorrectamente ás súas conformacións de baixa enerxía (por exemplo, a relaxada ou latente) antes de que realizasen debidamente o seu papel inhibitorio.[10]
As mutacións que afectan a taxa ou extensión da inserción do RCL na folla A poden causar que a serpina experimente o seu cambio conformacional de S a R antes de interaccionar cunha protease. Como unha serpina só pode facer este cambio conformacional unha vez, a serpina errada resultante é inactiva e incapaz de controlar axeitadamente á súa protease diana.[10][79] Igualmente, as mutacións que promoven unha transición inapropiada ao estado latente monómero causan enfermidades ao reduciren a cantidade de serpina inhibitoria activa. Por exemplo, as variantes das antitrombina ligadas a enfermidades Wibble e Wobble,[80] promoven ambas a formación do estado latente.
A estrutura do mutante ligado a enfermidades da antiquimotripsina (L55P) revelou outra "conformación δ" inactiva. Na conformación δ, catro residuos do RCL están inseridos na parte superior da folla β A. A metade inferior da folla está chea como resultado de que unha das hélices α (a hélice F) pasou parcialmente a unha conformación de febra β, completando os enlaces de hidróxeno da folla β.[81] Non está claro se outras serpinas poden adoptar este confórmero e se esta conformación ten un papel funcional, mais especúlase que a globulina fixadora da tiroxina pode adoptar a conformación δ durante a liberación da tiroxina.[56] As proteínas non inhibitorias relacionadas coas serpinas poden tamén causar doenzas cando están mutadas. Por exemplo, as mutación na SERPINF1 causan osteoxénese imperfecta tipo VI en humanos.[82]
En ausencia da serpina necesaria, a protease que normalmente regularía está sobreactiva, o que orixina patoloxías.[10] En consecuencia, unha simple deficiencia nunha serpina (por exemplo, unha mutación nula) pode ter como resultado unha enfermidade.[83] Utilízanse knockouts de xenes, especialmente os de ratos, para determinar experimentalmente as funcións normais das serpinas polos efectos observados na súa ausencia.[84]
Nalgúns raros casos, un só cambio de aminoácido nun RCL de serpina altera a súa especificidade de modo que toma como diana unha protease errada. Por exemplo, a mutación Antitripsina-Pittsburgh (M358R) causa que a serpina α1-antitripsina inhiba a trombina, causando un trastorno hemorráxico.[28]
Polimerización das serpinas por intercambio de dominios.
Un dímero de serpina de dominio intercambiado. (PDB2ZNH)
Un trímero de serpina de dominio intercambiado. O RCL de cada monómero está inserido na súa propia estrutura (mostrada en vermello no monómero verde). (PDB3T1P)
Cada monómero do agregado de serpina encóntrase na conformación relaxada inactiva (co RCL inserido na folla A). Os polímeros son, pois, hiperestables á temperatura e incapaces de inhibir proteases. Polo tanto, as serpinopatías causan patoloxías de xeito similar a outras proteopatías (por edxemplo, enfermidades de prións) por medio de dous mecanismos.[11][12] Primeiro, a falta de serpina activa ten como resultado unha actividade de protease incontrolada e destrución dos tecidos. Segundo, os propios polímeros hiperestables entupen o retículo endoplasmático de células que sintetizan serpinas, resultando finalmente na morte celular e danos nos tecidos. No caso da deficiencia da antitripsina, os polímeros de antitripsina causan a morte de células hepáticas, ás veces dando lugar a danos hepáticos e cirrose. Dentro da célula, os polímeros de serpina son retirados lentamente por degradación no retículo endoplasmático.[86] Porén, os detalles e como os polímeros de serpina causan a morte celular aínda non se comprenden completamente.[11]
Pénsase que os polímeros de serpina fisiolóxicos se forman por eventos de intercambio de dominios, onde un segmento dunha proteína serpina se insire noutro.[87] Os intercambios de dominios ocorren cando as mutacións ou factores ambientais interfiren cos estados finais do pregamento das serpinas ao estado nativo, causando que os intermediarios de alta enerxía se preguen mal.[88] Resolvéronse tanto as estruturas de intercambio de dominios dímeras coma trímeras. No dímero (da antitrombina), o RCL e parte da folla A incorpórase na folla A doutra molécula de serpina.[87] O trímero con intercambio de dominios (da antitripsina) fórmase polo intercambio dunha rexión totalmente diferente da estrutura, a folla B (co RCL de cada molécula inserido na súa propia folla A).[89] Tamén se propuxo que as serpinas poden formar intercambios de dominios inserindo o RCL dunha proteína na folla A doutra (polimerización de folla A).[85][90] Estas estruturas dímeras e trímeras de intercambio de dominios pénsase que son os bloques de construción dos agregados de polímeros que causan enfermidades, pero o mecanismo exacto aínda non está claro.[87][88][89][91]
Están utilizándose ou investigándose varias estratexias terapéuticas para tratar a serpinopatía máis común: a deficiencia de antitripsina.[11] A terapia de aumento da antitripsina está aprobada para o enfisema relacionado coa deficiencia de antitripsina grave.[92] Nesta terapia, a antitripsina é purificada do plasma sanguíneo de doantes de sangue e administrada por vía intravenosa (comercializada inicialmente como Prolastin).[11][93] O transplante de pulmón e fígado demostrou ser efectivo para tratar a enfermidade relacionada coa deficiencia de antitripsina grave.[11][94] En modelos animais, o gene targeting en células nais pluripotentes inducidas foi utilizado con éxito para corrixir un defecto de polimerización de antitripsina e para restaurar a capacidade do fígado dos mamíferos de segregar antitripsina activa.[95] Tamén se desenvolveron pequenas moléculas que bloquean a polimerización da antitripsina in vitro.[96][97]
As serpinas son a superfamilia de inhibidores de proteases máis grande e máis amplamente distribuída.[1][40] Pensouse inicialmente que estaban restrinxidas a organismos eucariotas, pero despois atopáronse en bacterias, arqueas e algúns virus.[36][37][98] Segue sen estar claro se os xenes procariotas son os descendentes dunha serpina procariota ancestral ou son o produto da transferencia horizontal de xenes desde os eucariotas. A maioría das serpinas intracelulares pertencen a un só cladofiloxenético, tanto se proceden de plantas coma de animais, o que indica que as serpinas intra e extracelulares puideron diverxer antes de que o fixesen as plantas e os animais.[99] Excepcións son a serpina de choque térmico intracelular HSP47, que é unha chaperona esencial para conseguir o correcto pregamento do coláxeno, e cicla entre o cis-Golgi e o retículo endoplasmático.[58]
Pénsase que a inhibición de proteases é a súa función ancestral, e os membros non inhibitorios resultarían da neofuncionalización evolutiva da estrutura. O cambio conformacional de S a R tamén foi adaptado por algunhas serpinas ligadoras para regular a afinidade polas súas dianas.[56]
O xenoma humano codifica 16 clados de serpinas, denominadas por orde alfabética desde serpinA a serpinP, incluíndo 29 proteínas serpina inhibitorias e 7 non inhibitorias.[9][84] O sistema de nomenclatura das serpinas humanas está baseado nunha análise filoxenética de aproximadamente 500 serpinas feito desde 2001, con proteínas chamadas serpinXY, onde X é o clado da proteína e Y é o número da proteína dentro do clado.[1][36][84] As funcións das serpinas humanas foron determinadas por unha combinación de estudos bioquímicos, trastornos xenéticos humanos, e modelos de ratos knockout.[84]
O knockout en ratos indicou orixinalmente que era letal,[141] pero posteriomente mostrou non ter un fenotipo obvio.[140] A expresión pode ser un indicador prognóstico que reflicte a expresión dun xene supresor de tumores veciño (a fosfatasePHLPP1).[140]
A Serpinb11 murina é un inhibidor activo, mentres que o ortólogo humano é inactivo.[154] A deficiencia en ponis está asociada coa enfermidade da separación da parede do casco.[155]
Identificáronse moitas serpinas de mamíferos que non comparten unha ortoloxía obvia coas serpinas correspondentes humanas. Son exemplos as numerosas serpinas de roedores (especialmente algunhas das serpinas intracelulares murinas) así como as serpinas uterinas. O termo serpina uterina aplícase a membros do clado da serpina A que están codificados polo xene SERPINA14. As serpinas uterinas prodúcense no endometrio dun grupo restrinxido de mamíferos do clado Laurasiatheria baixo a influencia da proxesterona ou estróxeno.[185] Probablemente non son inhibidores das proteases funcionais e poderían funcionar durante o embarazo para inhibiren as respostas inmunes maternas contra o concepto ou participaren no transporte transplacentario.[186]
O xenoma de Drosophila melanogaster contén 29 xenes que codifican serpinas. A análise das secuencias de aminoácidos serviu para situar 14 destas serpinas no clado Q das serpinas e 3 no clado K, mentres que as 12 restantes se clasifican como serpinas orfas que non pertencen a ningún clado.[187] O sistema de clasificación de clados é difícil de usar para as serpinas de Drosophila e no seu lugar adoptouse un sistema de nomenclatura baseado na posición dos xenes das serpinas nos cromosomas de Drosophila. Trece das serpinas de Drosophila aparecen como xenes illados no xenoma (incluíndo a Serpina-27A, ver máis abaixo), e as 16 restantes están organizadas en cinco agrupacións de xenes que se encontran nas posicións cromosómicas 28D (2 serpinas), 42D (5 serpinas), 43A (4 serpinas), 77B (3 serpinas) e 88E (2 serpinas).[187][188][189]
Estudos das serpinas de Drosophila revelan que a Serpina-27A inhibe a proteasee Easter (a protease final no cadoiro proteolítico de Nudel, Gastrulation Defective, Snake e Easter) e así controla os padróns dorsoventrais. Easter funciona clivando Spätzle (un ligando de tipo quimoquina), o que ten como resultado a sinalización mediada por Toll. Ademais do seu papel central no establecemento dos padróns embrionarios, a sinalización de Toll é tamén importante para a resposta inmunitaria innata en insectos. Por conseguinte, a serpina-27A tamén funciona controlando a resposta inmune dos insectos.[49][190][191] No coleópteroTenebrio molitor unha proteína (SPN93) que comprende dous dominios de serpina dispostos en tándem funciona regulando o cadoiro proteolítico de Toll.[192]
O xenoma do verme nematodoCaenorhabditis elegans contén 9 serpinas, todas as cales carecen de secuencia sinal e, polo tanto, son probablemente intracelulares.[193] Porén, só 5 destas serpinas parecen funcionar como inhibidores das proteases.[193] Unha, a SRP-6, realiza unha función protectora contra a distorsión lisosómica asociada á calpaína inducida polo estrés. Ademais, a SRP-6 inhibe as cisteína proteases lisosómicas liberadas despois da rotura do lisosoma. En consecuencia, os vermes que carecen de SRP-6 son sensible ao estrés. Hai que salientar que os vermes knockout para SRP-6 morren cando se meten en auga (o fenotipo de estrés hipoosmótico letal ou Osl). Suxeriuse, polo tanto, que os lisosomas xogan un papel xeral e controlable na determinación do destino celular.[194]
As serpinas de plantas estaban entre os primeiros membros da superfamilia que se identificaron.[195] A serpina proteína Z da cebada é moi abundante no gran de cebada e é un dos compoñentes proteicos principais na cervexa. O xenoma da planta modelo Arabidopsis thaliana contén 18 xenes similares aos das serpinas, aínda que só 8 deles teñen secuencias de serpina de lonxitude completa.
As serpinas de plantas son potentes inhibidores das serina proteases similares á quimotripsina de mamíferos in vitro, o exemplo mellor estudado é a serpina ZX da cebada (BSZx), que pode inhibir a tripsina e quimotripsina, así como varios factores de coagulación do sangue.[196] Porén, as plantas carecen de parentes próximos das serina proteases similares á quimotripsina. O RCL de varias serpinas do trigo e centeo conteñen secuencias repetidas poli-Q similares ás presentes nas proteínas de almacenamento prolaminas do endosperma.[197][198] Polo tanto, suxeriuse que as serpinas de plantas poden funcionar inhibindo proteases de insectos ou microbios que doutro modo dixerirían as proteínas de almacenamento dos grans de cereais. Un apoio para esta hipótese é que se identificaron serpinas específicas de plantas no zume do floema da cabaza (CmPS-1)[199] e do cogombro.[200][201] Aínda que se observou unha corelación inversa entre a regulación á alza da expresión de CmPS-1 e a supervivencia de áfidos, os experimentos de alimentación in vitro revelaron que a CmPS-1 recombinante non parecía afectar a supervivencia dos insectos.[199]
Propuxéronse funcións alternativas e dianas de proteases para as serpinas de plantas. A serpina de Arabidopsis, AtSerpin1 (At1g47710; 3LE2), é mediadora dun axuste do control sobre a morte celular programada ao afectar a cisteína protease similar á papaína chamada 'Responsive to Desiccation-21' (RD21).[54][202] A AtSerpin1 tamén inhibe as proteases similares á metacaspase in vitro.[53] Outras dúas serpinas de Arabidopsis, AtSRP2 (At2g14540) e AtSRP3 (At1g64030) parecen estar implicadas en respostas a danos no ADN.[203]
Caracterizouse unha soa serpina fúnxica ata agora: a celpina do fungo Piromycesspp. cepa E2. Piromyces é un xénero de fungos anaerobios que se atopan no rume de ruminantes e é importante para dixerir material vexetal. Predise que a celpina é inhibitoria e contén dous dominios de dockerina N-terminais ademais do seu dominio de serpina. As dockerinas atópanse comunmente en proteínas que se localizan no celulosoma fúnxico, un gran complexo multiproteico extracelular que degrada a celulosa.[38] En consecuencia, suxeriuse que a celpina pode protexer o celulosoma contra as proteases das plantas. Certas serpinas bacterianas localízanse igualmente no celulosoma.[204]
Os xenes de serpinas preditos están distribuídos esporadicamente en procariotas. Os estudos in vitro sobre algunhas destas moléculas revelaron que poden inhibir as proteases, e sinalouse que funcionan como inhibidores in vivo. Varias serpinas procariotas atópanse en extremófilos. Polo tanto, e a diferenza das serpinas de mamíferos, estas moléculas posúen unha elevada resistencia á desnaturalización por calor.[205][206] O papel preciso da maioría das serpinas bacterianas segue sen estar claro, aínda que a serpina de Clostridium thermocellum localízase no celulosoma. Suxeriuse que o papel das serpinas asociadas ao celulosoma pode ser impedir a actividade de proteases non desexada contra o celulosoma.[204]
Os virus tamén expresan serpinas como unha maneira de evadirse da defensa inmunitaria do hóspede.[207] As serpinas expresadas por Poxviridae, como o o virus da varíola das vacas (vaccinia) e da varíola do coello (mixoma), son interesantes debido ao seu potencial uso como novas terapéuticas para os trastornos inmunes e inflamatorios e na terapia de transplantes.[208][209] A Serp1 suprime a resposta inmune innata mediada por TLR e permite unha supervivencia indefinida de aloenxertos en ratas.[208][210] a Crma e a Serp2 son inhibidores de clase cruzada e a súa diana son serina proteases (grancima B; aínda que feblemente) e cisteína proteases (caspase 1 e caspase 8).[211][212] En comparación cos seus equivalentes en mamíferos, as serpinas virais conteñen delecións significativas de elementos de estrutura secundaria. Especificamente, o crmA carece de hélice D así como de porcións significativas das hélices A e E.[213]
↑ 1,01,11,21,31,4Silverman GA, Bird PI, Carrell RW, Church FC, Coughlin PB, Gettins PG, Irving JA, Lomas DA, Luke CJ, Moyer RW, Pemberton PA, Remold-O'Donnell E, Salvesen GS, Travis J, Whisstock JC (setembro de 2001). "The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature". The Journal of Biological Chemistry276 (36): 33293–33296. PMID11435447. doi:10.1074/jbc.R100016200.
↑Schultze HU, Göllner I, Heide K, Schönenberger M, Schwick G (agosto de 1955). "Zur Kenntnis der alpha-globulin des menschlichen normal serums" [For knowledge of the alpha - globulin of human normal serums]. Zeitschrift für Naturforschung B(en alemán)10 (8): 463. doi:10.1515/znb-1955-0810.
↑Petersen TE, Dudeck-Wojciechowska G, Sottrup-Jensen L, Magnusson S (1979). "Primary structure of antithrombin III (heparin cofactor): partial homology between alpha-1-antitrypsin and antithrombin III". En Collen D, Wiman B, Verstraete M. The Physiological Inhibitors of Coagulation and Fibrinolysis. Amsterdam: Elsevier. pp. 43–54.
↑Carrell R, Owen M, Brennan S, Vaughan L (decembo de 1979). "Carboxy terminal fragment of human alpha-1-antitrypsin from hydroxylamine cleavage: homology with antithrombin III". Biochemical and Biophysical Research Communications91 (3): 1032–1037. PMID316698. doi:10.1016/0006-291X(79)91983-1.
↑Hunt LT, Dayhoff MO (xullo de 1980). "A surprising new protein superfamily containing ovalbumin, antithrombin-III, and alpha 1-proteinase inhibitor". Biochemical and Biophysical Research Communications95 (2): 864–871. PMID6968211. doi:10.1016/0006-291X(80)90867-0.
↑Laurell CB, Eriksson S (marzo de 2013). "The electrophoretic α1-globulin pattern of serum in α1-antitrypsin deficiency. 1963". Copd10 (Suppl 1): 3–8. PMID23527532. doi:10.3109/15412555.2013.771956.
↑Carrell RW, Jeppsson JO, Laurell CB, Brennan SO, Owen MC, Vaughan L, Boswell DR (xullo de 1982). "Structure and variation of human alpha 1-antitrypsin". Nature298 (5872): 329–334. Bibcode:1982Natur.298..329C. PMID7045697. doi:10.1038/298329a0.
↑Carrell RW, Boswell DR, Brennan SO, Owen MC (marzo de 1980). "Active site of alpha 1-antitrypsin: homologous site in antithrombin-III". Biochemical and Biophysical Research Communications93 (2): 399–402. PMID6966929. doi:10.1016/0006-291X(80)91090-6.
↑Johnson D, Travis J (outubro de 1978). "Structural evidence for methionine at the reactive site of human alpha-1-proteinase inhibitor". The Journal of Biological Chemistry253 (20): 7142–7144. PMID701239. doi:10.1016/S0021-9258(17)34475-7.
↑Jörnvall H, Fish WW, Björk I (outubro de 1979). "The thrombin cleavage site in bovine antithrombin". FEBS Letters106 (2): 358–362. PMID499520. doi:10.1016/0014-5793(79)80532-3.
↑Egeberg O (xuño de 1965). "Inherited antithrombin deficiency causing thrombophilia". Thrombosis et Diathesis Haemorrhagica13 (2): 516–530. PMID14347873. doi:10.1055/s-0038-1656297.
↑ 28,028,1Owen MC, Brennan SO, Lewis JH, Carrell RW (setembro de 1983). "Mutation of antitrypsin to antithrombin. alpha 1-antitrypsin Pittsburgh (358 Met leads to Arg), a fatal bleeding disorder". The New England Journal of Medicine309 (12): 694–698. PMID6604220. doi:10.1056/NEJM198309223091203.
↑ 29,029,1Loebermann H, Tokuoka R, Deisenhofer J, Huber R (agosto de 1984). "Human alpha 1-proteinase inhibitor. Crystal structure analysis of two crystal modifications, molecular model and preliminary analysis of the implications for function". Journal of Molecular Biology177 (3): 531–557. PMID6332197. doi:10.1016/0022-2836(84)90298-5.
↑ 30,030,1Stein PE, Leslie AG, Finch JT, Turnell WG, McLaughlin PJ, Carrell RW (setembro de 1990). "Crystal structure of ovalbumin as a model for the reactive centre of serpins". Nature347 (6288): 99–102. Bibcode:1990Natur.347...99S. PMID2395463. doi:10.1038/347099a0.
↑Mottonen J, Strand A, Symersky J, Sweet RM, Danley DE, Geoghegan KF, Gerard RD, Goldsmith EJ (xaneiro de 1992). "Structural basis of latency in plasminogen activator inhibitor-1". Nature355 (6357): 270–273. Bibcode:1992Natur.355..270M. PMID1731226. doi:10.1038/355270a0.
↑Austin RC, Rachubinski RA, Ofosu FA, Blajchman MA (maio de 1991). "Antithrombin-III-Hamilton, Ala 382 to Thr: an antithrombin-III variant that acts as a substrate but not an inhibitor of alpha-thrombin and factor Xa". Blood77 (10): 2185–2189. PMID2029579. doi:10.1182/blood.V77.10.2185.2185.
↑ 36,036,136,2Irving JA, Pike RN, Lesk AM, Whisstock JC (decembro de 2000). "Phylogeny of the serpin superfamily: implications of patterns of amino acid conservation for structure and function". Genome Research10 (12): 1845–1864. PMID11116082. doi:10.1101/gr.GR-1478R.
↑Huber R, Carrell RW (novembro de 1989). "Implications of the three-dimensional structure of alpha 1-antitrypsin for structure and function of serpins". Biochemistry28 (23): 8951–8966. PMID2690952. doi:10.1021/bi00449a001.
↑Barrett AJ, Rawlings ND (abril de 1995). "Families and clans of serine peptidases". Archives of Biochemistry and Biophysics318 (2): 247–250. PMID7733651. doi:10.1006/abbi.1995.1227.
↑Izuhara K, Yamaguchi Y, Ohta S, Nunomura S, Nanri Y, Azuma Y, Nomura N, Noguchi Y, Aihara M. Squamous Cell Carcinoma Antigen 2 (SCCA2, SERPINB4): An Emerging Biomarker for Skin Inflammatory Diseases. Int J Mol Sci. 6 de abril de 2018;19(4):1102. doi: 10.3390/ijms19041102. PMID29642409 ; PMCID: PMC5979376. Cita:"Os antíxenos 1 e 2 do carcinoma de células escamosas (SCCA1 e 2, SERPIN B3 e B4), membros da familia das serpinas serpina da ovoalbumina (ov-serpina)/clado B..."
↑Ong PC, McGowan S, Pearce MC, Irving JA, Kan WT, Grigoryev SA, Turk B, Silverman GA, Brix K, Bottomley SP, Whisstock JC, Pike RN (decembro de 2007). "DNA accelerates the inhibition of human cathepsin V by serpins". The Journal of Biological Chemistry282 (51): 36980–36986. PMID17923478. doi:10.1074/jbc.M706991200.
↑ 48,048,1Acosta H, Iliev D, Grahn TH, Gouignard N, Maccarana M, Griesbach J, Herzmann S, Sagha M, Climent M, Pera EM (marzo de 2015). "The serpin PN1 is a feedback regulator of FGF signaling in germ layer and primary axis formation". Development142 (6): 1146–1158. PMID25758225. doi:10.1242/dev.113886.
↑ 49,049,149,2Hashimoto C, Kim DR, Weiss LA, Miller JW, Morisato D (decembro de 2003). "Spatial regulation of developmental signaling by a serpin". Developmental Cell5 (6): 945–950. PMID14667416. doi:10.1016/S1534-5807(03)00338-1.
↑Ray CA, Black RA, Kronheim SR, Greenstreet TA, Sleath PR, Salvesen GS, Pickup DJ (maio de 1992). "Viral inhibition of inflammation: cowpox virus encodes an inhibitor of the interleukin-1 beta converting enzyme". Cell69 (4): 597–604. PMID1339309. doi:10.1016/0092-8674(92)90223-Y.
↑ 53,053,1Vercammen D, Belenghi B, van de Cotte B, Beunens T, Gavigan JA, De Rycke R, Brackenier A, Inzé D, Harris JL, Van Breusegem F (decembro de 2006). "Serpin1 of Arabidopsis thaliana is a suicide inhibitor for metacaspase 9". Journal of Molecular Biology364 (4): 625–636. PMID17028019. doi:10.1016/j.jmb.2006.09.010.
↑ 55,055,155,2Klieber MA, Underhill C, Hammond GL, Muller YA (outubro de 2007). "Corticosteroid-binding globulin, a structural basis for steroid transport and proteinase-triggered release". The Journal of Biological Chemistry282 (40): 29594–29603. PMID17644521. doi:10.1074/jbc.M705014200.
↑Huntington JA, Stein PE (maio de 2001). "Structure and properties of ovalbumin". Journal of Chromatography. B, Biomedical Sciences and Applications756 (1–2): 189–198. PMID11419711. doi:10.1016/S0378-4347(01)00108-6.
↑ 58,058,158,2Mala JG, Rose C (novembro de 2010). "Interactions of heat shock protein 47 with collagen and the stress response: an unconventional chaperone model?". Life Sciences87 (19–22): 579–586. PMID20888348. doi:10.1016/j.lfs.2010.09.024.
↑Grigoryev SA, Bednar J, Woodcock CL (febreiro de 1999). "MENT, a heterochromatin protein that mediates higher order chromatin folding, is a new serpin family member". The Journal of Biological Chemistry274 (9): 5626–5636. PMID10026180. doi:10.1074/jbc.274.9.5626.
↑Elliott PR, Lomas DA, Carrell RW, Abrahams JP (agosto de 1996). "Inhibitory conformation of the reactive loop of alpha 1-antitrypsin". Nature Structural Biology3 (8): 676–681. PMID8756325. doi:10.1038/nsb0896-676.
↑Horvath AJ, Irving JA, Rossjohn J, Law RH, Bottomley SP, Quinsey NS, Pike RN, Coughlin PB, Whisstock JC (decembro de 2005). "The murine orthologue of human antichymotrypsin: a structural paradigm for clade A3 serpins". The Journal of Biological Chemistry280 (52): 43168–43178. PMID16141197. doi:10.1074/jbc.M505598200.
↑Whisstock JC, Skinner R, Carrell RW, Lesk AM (febreiro de 2000). "Conformational changes in serpins: I. The native and cleaved conformations of alpha(1)-antitrypsin". Journal of Molecular Biology296 (2): 685–699. PMID10669617. doi:10.1006/jmbi.1999.3520.
↑Whisstock JC, Pike RN, Jin L, Skinner R, Pei XY, Carrell RW, Lesk AM (setembro de 2000). "Conformational changes in serpins: II. The mechanism of activation of antithrombin by heparin". Journal of Molecular Biology301 (5): 1287–1305. PMID10966821. doi:10.1006/jmbi.2000.3982.
↑Li W, Johnson DJ, Esmon CT, Huntington JA (setembro de 2004). "Structure of the antithrombin-thrombin-heparin ternary complex reveals the antithrombotic mechanism of heparin". Nature Structural & Molecular Biology11 (9): 857–862. PMID15311269. doi:10.1038/nsmb811.
↑Walenga JM, Jeske WP, Samama MM, Frapaise FX, Bick RL, Fareed J (marzo de 2002). "Fondaparinux: a synthetic heparin pentasaccharide as a new antithrombotic agent". Expert Opinion on Investigational Drugs11 (3): 397–407. PMID11866668. doi:10.1517/13543784.11.3.397.
↑Petitou M, van Boeckel CA (xuño de 2004). "A synthetic antithrombin III binding pentasaccharide is now a drug! What comes next?". Angewandte Chemie43 (24): 3118–3133. PMID15199558. doi:10.1002/anie.200300640.
↑ 69,069,1Lindahl TL, Sigurdardottir O, Wiman B (setembro de 1989). "Stability of plasminogen activator inhibitor 1 (PAI-1)". Thrombosis and Haemostasis62 (2): 748–751. PMID2479113. doi:10.1055/s-0038-1646895.
↑Mushunje A, Evans G, Brennan SO, Carrell RW, Zhou A (decembro de 2004). "Latent antithrombin and its detection, formation and turnover in the circulation". Journal of Thrombosis and Haemostasis2 (12): 2170–2177. PMID15613023. doi:10.1111/j.1538-7836.2004.01047.x.
↑Zhang Q, Law RH, Bottomley SP, Whisstock JC, Buckle AM (marzo de 2008). "A structural basis for loop C-sheet polymerization in serpins". Journal of Molecular Biology376 (5): 1348–1359. PMID18234218. doi:10.1016/j.jmb.2007.12.050.
↑Pemberton PA, Stein PE, Pepys MB, Potter JM, Carrell RW (novembro de 1988). "Hormone binding globulins undergo serpin conformational change in inflammation". Nature336 (6196): 257–258. Bibcode:1988Natur.336..257P. PMID3143075. doi:10.1038/336257a0.
↑Kaiserman D, Whisstock JC, Bird PI (decembro de 2006). "Mechanisms of serpin dysfunction in disease". Expert Reviews in Molecular Medicine8 (31): 1–19. PMID17156576. doi:10.1017/S1462399406000184.
↑Hopkins PC, Carrell RW, Stone SR (agosto de 1993). "Effects of mutations in the hinge region of serpins". Biochemistry32 (30): 7650–7657. PMID8347575. doi:10.1021/bi00081a008.
↑Beauchamp NJ, Pike RN, Daly M, Butler L, Makris M, Dafforn TR, Zhou A, Fitton HL, Preston FE, Peake IR, Carrell RW (outubro de 1998). "Antithrombins Wibble and Wobble (T85M/K): archetypal conformational diseases with in vivo latent-transition, thrombosis, and heparin activation". Blood92 (8): 2696–2706. PMID9763552. doi:10.1182/blood.V92.8.2696.
↑Fay WP, Parker AC, Condrey LR, Shapiro AD (xullo de 1997). "Human plasminogen activator inhibitor-1 (PAI-1) deficiency: characterization of a large kindred with a null mutation in the PAI-1 gene". Blood90 (1): 204–208. PMID9207454. doi:10.1182/blood.V90.1.204.
↑Miranda E, Pérez J, Ekeowa UI, Hadzic N, Kalsheker N, Gooptu B, Portmann B, Belorgey D, Hill M, Chambers S, Teckman J, Alexander GJ, Marciniak SJ, Lomas DA (setembro de 2010). "A novel monoclonal antibody to characterize pathogenic polymers in liver disease associated with alpha1-antitrypsin deficiency". Hepatology52 (3): 1078–1088. PMID20583215. doi:10.1002/hep.23760.
↑Münch J, Ständker L, Adermann K, Schulz A, Schindler M, Chinnadurai R, Pöhlmann S, Chaipan C, Biet T, Peters T, Meyer B, Wilhelm D, Lu H, Jing W, Jiang S, Forssmann WG, Kirchhoff F (abril de 2007). "Discovery and optimization of a natural HIV-1 entry inhibitor targeting the gp41 fusion peptide". Cell129 (2): 263–275. PMID17448989. doi:10.1016/j.cell.2007.02.042.
↑Gooptu B, Dickens JA, Lomas DA (febreiro de 2014). "The molecular and cellular pathology of α₁-antitrypsin deficiency". Trends in Molecular Medicine20 (2): 116–127. PMID24374162. doi:10.1016/j.molmed.2013.10.007.
↑Zhang S, Janciauskiene S (abril de 2002). "Multi-functional capability of proteins: alpha1-antichymotrypsin and the correlation with Alzheimer's disease". Journal of Alzheimer's Disease4 (2): 115–122. PMID12214135. doi:10.3233/JAD-2002-4206.
↑Miao RQ, Agata J, Chao L, Chao J (novembro de 2002). "Kallistatin is a new inhibitor of angiogenesis and tumor growth". Blood100 (9): 3245–3252. PMID12384424. doi:10.1182/blood-2002-01-0185.
↑Geiger M (marzo de 2007). "Protein C inhibitor, a serpin with functions in- and outside vascular biology". Thrombosis and Haemostasis97 (3): 343–347. PMID17334499. doi:10.1160/th06-09-0488.
↑Han MH, Hwang SI, Roy DB, Lundgren DH, Price JV, Ousman SS, Fernald GH, Gerlitz B, Robinson WH, Baranzini SE, Grinnell BW, Raine CS, Sobel RA, Han DK, Steinman L (febreiro de 2008). "Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets". Nature451 (7182): 1076–1081. Bibcode:2008Natur.451.1076H. PMID18278032. doi:10.1038/nature06559.
↑Torpy DJ, Ho JT (agosto de 2007). "Corticosteroid-binding globulin gene polymorphisms: clinical implications and links to idiopathic chronic fatigue disorders". Clinical Endocrinology67 (2): 161–167. PMID17547679. doi:10.1111/j.1365-2265.2007.02890.x.
↑Bartalena L, Robbins J (1992). "Variations in thyroid hormone transport proteins and their clinical implications". Thyroid2 (3): 237–245. PMID1422238. doi:10.1089/thy.1992.2.237.
↑Persani L (setembro de 2012). "Clinical review: Central hypothyroidism: pathogenic, diagnostic, and therapeutic challenges". The Journal of Clinical Endocrinology and Metabolism97 (9): 3068–3078. PMID22851492. doi:10.1210/jc.2012-1616.
↑Kumar R, Singh VP, Baker KM (xullo de 2007). "The intracellular renin-angiotensin system: a new paradigm". Trends in Endocrinology and Metabolism18 (5): 208–214. PMID17509892. doi:10.1016/j.tem.2007.05.001.
↑Tanimoto K, Sugiyama F, Goto Y, Ishida J, Takimoto E, Yagami K, Fukamizu A, Murakami K (decembro de 1994). "Angiotensinogen-deficient mice with hypotension". The Journal of Biological Chemistry269 (50): 31334–31337. PMID7989296. doi:10.1016/S0021-9258(18)31697-1.
↑Jeunemaitre X, Gimenez-Roqueplo AP, Célérier J, Corvol P (1999). "Angiotensinogen variants and human hypertension". Current Hypertension Reports1 (1): 31–41. PMID10981040. doi:10.1007/s11906-999-0071-0.
↑Ashton-Rickardt PG (abril de 2013). "An emerging role for Serine Protease Inhibitors in T lymphocyte immunity and beyond". Immunology Letters152 (1): 65–76. PMID23624075. doi:10.1016/j.imlet.2013.04.004.
↑Han X, Fiehler R, Broze GJ (novembro de 2000). "Characterization of the protein Z-dependent protease inhibitor". Blood96 (9): 3049–3055. PMID11049983. doi:10.1182/blood.V96.9.3049.
↑Feng R, Li Y, Wang C, Luo C, Liu L, Chuo F, Li Q, Sun C (outubro de 2014). "Higher vaspin levels in subjects with obesity and type 2 diabetes mellitus: a meta-analysis". Diabetes Research and Clinical Practice106 (1): 88–94. PMID25151227. doi:10.1016/j.diabres.2014.07.026.
↑Takeda A, Yamamoto T, Nakamura Y, Takahashi T, Hibino T (febreiro de 1995). "Squamous cell carcinoma antigen is a potent inhibitor of cysteine proteinase cathepsin L". FEBS Letters359 (1): 78–80. PMID7851535. doi:10.1016/0014-5793(94)01456-b.
↑Schick C, Kamachi Y, Bartuski AJ, Cataltepe S, Schechter NM, Pemberton PA, Silverman GA (xaneiro de 1997). "Squamous cell carcinoma antigen 2 is a novel serpin that inhibits the chymotrypsin-like proteinases cathepsin G and mast cell chymase". The Journal of Biological Chemistry272 (3): 1849–1855. PMID8999871. doi:10.1074/jbc.272.3.1849.
↑Zou Z, Anisowicz A, Hendrix MJ, Thor A, Neveu M, Sheng S, Rafidi K, Seftor E, Sager R (xaneiro de 1994). "Maspin, a serpin with tumor-suppressing activity in human mammary epithelial cells". Science263 (5146): 526–529. Bibcode:1994Sci...263..526Z. PMID8290962. doi:10.1126/science.8290962.
↑Gao F, Shi HY, Daughty C, Cella N, Zhang M (abril de 2004). "Maspin plays an essential role in early embryonic development". Development131 (7): 1479–1489. PMID14985257. doi:10.1242/dev.01048.
↑Scott FL, Hirst CE, Sun J, Bird CH, Bottomley SP, Bird PI (marzo de 1999). "The intracellular serpin proteinase inhibitor 6 is expressed in monocytes and granulocytes and is a potent inhibitor of the azurophilic granule protease, cathepsin G". Blood93 (6): 2089–2097. PMID10068683. doi:10.1182/blood.V93.6.2089.406k10_2089_2097.
↑Tan J, Prakash MD, Kaiserman D, Bird PI (xullo de 2013). "Absence of SERPINB6A causes sensorineural hearing loss with multiple histopathologies in the mouse inner ear". The American Journal of Pathology183 (1): 49–59. PMID23669344. doi:10.1016/j.ajpath.2013.03.009.
↑Kubo A (agosto de 2014). "Nagashima-type palmoplantar keratosis: a common Asian type caused by SERPINB7 protease inhibitor deficiency". The Journal of Investigative Dermatology134 (8): 2076–2079. PMID25029323. doi:10.1038/jid.2014.156.
↑Dahlen JR, Jean F, Thomas G, Foster DC, Kisiel W (xaneiro de 1998). "Inhibition of soluble recombinant furin by human proteinase inhibitor 8". The Journal of Biological Chemistry273 (4): 1851–1854. PMID9442015. doi:10.1074/jbc.273.4.1851.
↑Sun J, Bird CH, Sutton V, McDonald L, Coughlin PB, De Jong TA, Trapani JA, Bird PI (novembro de 1996). "A cytosolic granzyme B inhibitor related to the viral apoptotic regulator cytokine response modifier A is present in cytotoxic lymphocytes". The Journal of Biological Chemistry271 (44): 27802–27809. PMID8910377. doi:10.1074/jbc.271.44.27802.
↑Zhang M, Park SM, Wang Y, Shah R, Liu N, Murmann AE, Wang CR, Peter ME, Ashton-Rickardt PG (abril de 2006). "Serine protease inhibitor 6 protects cytotoxic T cells from self-inflicted injury by ensuring the integrity of cytotoxic granules". Immunity24 (4): 451–461. PMID16618603. doi:10.1016/j.immuni.2006.02.002.
↑Rizzitelli A, Meuter S, Vega Ramos J, Bird CH, Mintern JD, Mangan MS, Villadangos J, Bird PI (outubro de 2012). "Serpinb9 (Spi6)-deficient mice are impaired in dendritic cell-mediated antigen cross-presentation". Immunology and Cell Biology90 (9): 841–851. PMID22801574. doi:10.1038/icb.2012.29.
↑Riewald M, Chuang T, Neubauer A, Riess H, Schleef RR (febreiro de 1998). "Expression of bomapin, a novel human serpin, in normal/malignant hematopoiesis and in the monocytic cell lines THP-1 and AML-193". Blood91 (4): 1256–1262. PMID9454755. doi:10.1182/blood.V91.4.1256.
↑ 154,0154,1Askew DJ, Cataltepe S, Kumar V, Edwards C, Pace SM, Howarth RN, Pak SC, Askew YS, Brömme D, Luke CJ, Whisstock JC, Silverman GA (agosto de 2007). "SERPINB11 is a new noninhibitory intracellular serpin. Common single nucleotide polymorphisms in the scaffold impair conformational change". The Journal of Biological Chemistry282 (34): 24948–24960. PMID17562709. doi:10.1074/jbc.M703182200.
↑Askew YS, Pak SC, Luke CJ, Askew DJ, Cataltepe S, Mills DR, Kato H, Lehoczky J, Dewar K, Birren B, Silverman GA (decembro de 2001). "SERPINB12 is a novel member of the human ov-serpin family that is widely expressed and inhibits trypsin-like serine proteinases". The Journal of Biological Chemistry276 (52): 49320–49330. PMID11604408. doi:10.1074/jbc.M108879200.
↑Welss T, Sun J, Irving JA, Blum R, Smith AI, Whisstock JC, Pike RN, von Mikecz A, Ruzicka T, Bird PI, Abts HF (xuño de 2003). "Hurpin is a selective inhibitor of lysosomal cathepsin L and protects keratinocytes from ultraviolet-induced apoptosis". Biochemistry42 (24): 7381–7389. PMID12809493. doi:10.1021/bi027307q.
↑Cale JM, Lawrence DA (setembro de 2007). "Structure-function relationships of plasminogen activator inhibitor-1 and its potential as a therapeutic agent". Current Drug Targets8 (9): 971–981. PMID17896949. doi:10.2174/138945007781662337.
↑ 167,0167,1Doll JA, Stellmach VM, Bouck NP, Bergh AR, Lee C, Abramson LP, Cornwell ML, Pins MR, Borensztajn J, Crawford SE (xuño de 2003). "Pigment epithelium-derived factor regulates the vasculature and mass of the prostate and pancreas". Nature Medicine9 (6): 774–780. PMID12740569. doi:10.1038/nm870.
↑Andreu-Agulló C, Morante-Redolat JM, Delgado AC, Fariñas I (decembro de 2009). "Vascular niche factor PEDF modulates Notch-dependent stemness in the adult subependymal zone". Nature Neuroscience12 (12): 1514–1523. PMID19898467. doi:10.1038/nn.2437.
↑Wiman B, Collen D (setembro de 1979). "On the mechanism of the reaction between human alpha 2-antiplasmin and plasmin". The Journal of Biological Chemistry254 (18): 9291–9297. PMID158022. doi:10.1016/S0021-9258(19)86843-6.
↑Lijnen HR, Okada K, Matsuo O, Collen D, Dewerchin M (abril de 1999). "Alpha2-antiplasmin gene deficiency in mice is associated with enhanced fibrinolytic potential without overt bleeding". Blood93 (7): 2274–2281. PMID10090937. doi:10.1182/blood.V93.7.2274.
↑Carpenter SL, Mathew P (novembro de 2008). "Alpha2-antiplasmin and its deficiency: fibrinolysis out of balance". Haemophilia14 (6): 1250–1254. PMID19141165. doi:10.1111/j.1365-2516.2008.01766.x.
↑Beinrohr L, Harmat V, Dobó J, Lörincz Z, Gál P, Závodszky P (xullo de 2007). "C1 inhibitor serpin domain structure reveals the likely mechanism of heparin potentiation and conformational disease". The Journal of Biological Chemistry282 (29): 21100–21109. PMID17488724. doi:10.1074/jbc.M700841200. hdl:10831/92835.
↑Mollnes TE, Jokiranta TS, Truedsson L, Nilsson B, Rodriguez de Cordoba S, Kirschfink M (setembro de 2007). "Complement analysis in the 21st century". Molecular Immunology44 (16): 3838–3849. PMID17768101. doi:10.1016/j.molimm.2007.06.150. hdl:10261/61732.
↑Triggianese P, Chimenti MS, Toubi E, Ballanti E, Guarino MD, Perricone C, Perricone R (agosto de 2015). "The autoimmune side of hereditary angioedema: insights on the pathogenesis". Autoimmunity Reviews14 (8): 665–669. PMID25827463. doi:10.1016/j.autrev.2015.03.006.
↑Osterwalder T, Cinelli P, Baici A, Pennella A, Krueger SR, Schrimpf SP, Meins M, Sonderegger P (xaneiro de 1998). "The axonally secreted serine proteinase inhibitor, neuroserpin, inhibits plasminogen activators and plasmin but not thrombin". The Journal of Biological Chemistry273 (4): 2312–2321. PMID9442076. doi:10.1074/jbc.273.4.2312.
↑Crowther DC (xullo de 2002). "Familial conformational diseases and dementias". Human Mutation20 (1): 1–14. PMID12112652. doi:10.1002/humu.10100.
↑Ozaki K, Nagata M, Suzuki M, Fujiwara T, Miyoshi Y, Ishikawa O, Ohigashi H, Imaoka S, Takahashi E, Nakamura Y (xullo de 1998). "Isolation and characterization of a novel human pancreas-specific gene, pancpin, that is down-regulated in pancreatic cancer cells". Genes, Chromosomes & Cancer22 (3): 179–185. PMID9624529. doi:10.1002/(SICI)1098-2264(199807)22:3<179::AID-GCC3>3.0.CO;2-T.
↑Padua MB, Kowalski AA, Cañas MY, Hansen PJ (febreiro de 2010). "The molecular phylogeny of uterine serpins and its relationship to evolution of placentation". FASEB Journal24 (2): 526–537. PMID19825977. doi:10.1096/fj.09-138453.
↑Padua MB, Hansen PJ (outubro de 2010). "Evolution and function of the uterine serpins (SERPINA14)". American Journal of Reproductive Immunology64 (4): 265–274. PMID20678169. doi:10.1111/j.1600-0897.2010.00901.x.
↑Ligoxygakis P, Roth S, Reichhart JM (decembro de 2003). "A serpin regulates dorsal-ventral axis formation in the Drosophila embryo". Current Biology13 (23): 2097–2102. PMID14654000. doi:10.1016/j.cub.2003.10.062.
↑ 193,0193,1Pak SC, Kumar V, Tsu C, Luke CJ, Askew YS, Askew DJ, Mills DR, Brömme D, Silverman GA (abril de 2004). "SRP-2 is a cross-class inhibitor that participates in postembryonic development of the nematode Caenorhabditis elegans: initial characterization of the clade L serpins". The Journal of Biological Chemistry279 (15): 15448–15459. PMID14739286. doi:10.1074/jbc.M400261200.
↑Hejgaard J, Rasmussen SK, Brandt A, SvendsenI (1985). "Sequence homology between barley endosperm protein Z and protease inhibitors of the alpha-1-antitrypsin family". FEBS Lett.180 (1): 89–94. doi:10.1016/0014-5793(85)80238-6.
↑Dahl SW, Rasmussen SK, Petersen LC, Hejgaard J (setembro de 1996). "Inhibition of coagulation factors by recombinant barley serpin BSZx". FEBS Letters394 (2): 165–168. PMID8843156. doi:10.1016/0014-5793(96)00940-4.
↑Hejgaard J (xaneiro de 2001). "Inhibitory serpins from rye grain with glutamine as P1 and P2 residues in the reactive center". FEBS Letters488 (3): 149–153. PMID11163762. doi:10.1016/S0014-5793(00)02425-X.
↑Ostergaard H, Rasmussen SK, Roberts TH, Hejgaard J (outubrode 2000). "Inhibitory serpins from wheat grain with reactive centers resembling glutamine-rich repeats of prolamin storage proteins. Cloning and characterization of five major molecular forms". The Journal of Biological Chemistry275 (43): 33272–33279. PMID10874043. doi:10.1074/jbc.M004633200.
↑ 199,0199,1Yoo BC, Aoki K, Xiang Y, Campbell LR, Hull RJ, Xoconostle-Cázares B, Monzer J, Lee JY, Ullman DE, Lucas WJ (novembro de 2000). "Characterization of cucurbita maxima phloem serpin-1 (CmPS-1). A developmentally regulated elastase inhibitor". The Journal of Biological Chemistry275 (45): 35122–35128. PMID10960478. doi:10.1074/jbc.M006060200.
↑Roberts TH, Hejgaard J (febreiro de 2008). "Serpins in plants and green algae". Functional & Integrative Genomics8 (1): 1–27. PMID18060440. doi:10.1007/s10142-007-0059-2.
↑Lampl N, Alkan N, Davydov O, Fluhr R (maio de 2013). "Set-point control of RD21 protease activity by AtSerpin1 controls cell death in Arabidopsis". The Plant Journal74 (3): 498–510. PMID23398119. doi:10.1111/tpj.12141.
↑ 204,0204,1Kang S, Barak Y, Lamed R, Bayer EA, Morrison M (xuño de 2006). "The functional repertoire of prokaryote cellulosomes includes the serpin superfamily of serine proteinase inhibitors". Molecular Microbiology60 (6): 1344–1354. PMID16796673. doi:10.1111/j.1365-2958.2006.05182.x.
↑Irving JA, Cabrita LD, Rossjohn J, Pike RN, Bottomley SP, Whisstock JC (abril de 2003). "The 1.5 A crystal structure of a prokaryote serpin: controlling conformational change in a heated environment". Structure11 (4): 387–397. PMID12679017. doi:10.1016/S0969-2126(03)00057-1.
↑Fulton KF, Buckle AM, Cabrita LD, Irving JA, Butcher RE, Smith I, Reeve S, Lesk AM, Bottomley SP, Rossjohn J, Whisstock JC (marzo de 2005). "The high resolution crystal structure of a native thermostable serpin reveals the complex mechanism underpinning the stressed to relaxed transition". The Journal of Biological Chemistry280 (9): 8435–8442. PMID15590653. doi:10.1074/jbc.M410206200.
↑ 208,0208,1Richardson J, Viswanathan K, Lucas A (xaneiro de 2006). "Serpins, the vasculature, and viral therapeutics". Frontiers in Bioscience11: 1042–1056. PMID16146796. doi:10.2741/1862.
↑Jiang J, Arp J, Kubelik D, Zassoko R, Liu W, Wise Y, Macaulay C, Garcia B, McFadden G, Lucas AR, Wang H (novembro de 2007). "Induction of indefinite cardiac allograft survival correlates with toll-like receptor 2 and 4 downregulation after serine protease inhibitor-1 (Serp-1) treatment". Transplantation84 (9): 1158–1167. PMID17998872. doi:10.1097/01.tp.0000286099.50532.b0.
↑Dai E, Guan H, Liu L, Little S, McFadden G, Vaziri S, Cao H, Ivanova IA, Bocksch L, Lucas A (maio de 2003). "Serp-1, a viral anti-inflammatory serpin, regulates cellular serine proteinase and serpin responses to vascular injury". The Journal of Biological Chemistry278 (20): 18563–18572. PMID12637546. doi:10.1074/jbc.M209683200.
↑Munuswamy-Ramanujam G, Khan KA, Lucas AR (decembro de 2006). "Viral anti-inflammatory reagents: the potential for treatment of arthritic and vasculitic disorders". Endocrine, Metabolic & Immune Disorders Drug Targets6 (4): 331–343. PMID17214579. doi:10.2174/187153006779025720.
↑Renatus M, Zhou Q, Stennicke HR, Snipas SJ, Turk D, Bankston LA, Liddington RC, Salvesen GS (xullo de 2000). "Crystal structure of the apoptotic suppressor CrmA in its cleaved form". Structure8 (7): 789–797. PMID10903953. doi:10.1016/S0969-2126(00)00165-9.