Đường cong Mordell

y2 = x3 + 1, với nghiệm nguyên tại (-1, 0), (0, 1) và (0, -1)

Trong đại số, đường cong Mordellđường cong elliptic dưới dạng y2 = x3 + n với n cố định là số nguyên khác không .[1]

Các đường cong elliptic này được nghiên cứu cẩn thận bởi Louis Mordell,[2]. Ông đã chứng minh rằng mọi đường cong Mordell chỉ chứa hữu hạn số điểm nguyên (x, y). Hay nói cách khác, khoảng cách giữa số chính phươngsố lập phương tiến tới vô cùng. Tốc độ mà khoảng cách lớn dần được xét bằng phương pháp Baker. Theo giả thuyết thì bài toán này có thể giải theo giả thuyết Marshall Hall.

Các tính chất

[sửa | sửa mã nguồn]

Nếu (x, y) là điểm nguyên trên đường cong Mordell thì (x, -y) cũng là điểm nguyên trên đường cong đó.

Có một số giá trị n mà đường cong Mordell tương ứng không có nghiệm [1] danh sách các giá trị đó là:

6, 7, 11, 13, 14, 20, 21, 23, 29, 32, 34, 39, 42, ... (dãy số A054504 trong bảng OEIS).
−3, −5, −6, −9, −10, −12, −14, −16, −17, −21, −22, ... (dãy số A081121 trong bảng OEIS).

Trường hợp đặc biệt n = −2 được gọi là Định lý kẹp của Fermat.[3]

Danh sách kết quả

[sửa | sửa mã nguồn]

Sau đây là danh sách kết quả cho đường cong Mordell y2 = x3 + n với |n| ≤ 25. Ở đây chỉ hiện các cặp có y ≥ 0.

n (x,y)
1 (−1, 0), (0, 1), (2, 3)
2 (−1, 1)
3 (1, 2)
4 (0, 2)
5 (−1, 2)
6
7
8 (−2, 0), (1, 3), (2, 4), (46, 312)
9 (−2, 1), (0, 3), (3, 6), (6, 15), (40, 253)
10 (−1, 3)
11
12 (−2, 2), (13, 47)
13
14
15 (1, 4), (109, 1138)
16 (0, 4)
17 (−1, 4), (−2, 3), (2, 5), (4, 9), (8, 23), (43, 282), (52, 375), (5234, 378661)
18 (7, 19)
19 (5, 12)
20
21
22 (3, 7)
23
24 (−2, 4), (1, 5), (10, 32), (8158, 736844)
25 (0, 5)
n (x,y)
−1 (1, 0)
−2 (3, 5)
−3
−4 (5, 11), (2, 2)
−5
−6
−7 (2, 1), (32, 181)
−8 (2, 0)
−9
−10
−11 (3, 4), (15, 58)
−12
−13 (17, 70)
−14
−15 (4, 7)
−16
−17
−18 (3, 3)
−19 (7, 18)
−20 (6, 14)
−21
−22
−23 (3, 2)
−24
−25 (5, 10)

Trong 1998, J. Gebel, A. Pethö, H. G. Zimmer tìm mọi điểm nguyên cho 0 < |n| ≤ 104.[4][5]

Trong 2015, M. A. Bennett và A. Ghadermarzi tính toàn bộ điểm nguyên cho 0 < |n| ≤ 107.[6]

Tham khảo

[sửa | sửa mã nguồn]
  1. ^ a b Weisstein, Eric W., "Mordell Curve" từ MathWorld.
  2. ^ Louis Mordell (1969). Diophantine Equations.
  3. ^ Weisstein, Eric W., "Fermat's Sandwich Theorem" từ MathWorld.
  4. ^ Gebel, J.; Pethö, A.; Zimmer, H. G. (1998). “On Mordell's equation”. Compositio Mathematica. 110 (3): 335–367. doi:10.1023/A:1000281602647.
  5. ^ Sequences A081119 and A081120.
  6. ^ M. A. Bennett, A. Ghadermarzi (2015). “Mordell's equation : a classical approach” (PDF). LMS Journal of Computation and Mathematics. 18: 633–646. arXiv:1311.7077. doi:10.1112/S1461157015000182.

Liên kết ngoài

[sửa | sửa mã nguồn]
Chúng tôi bán
Bài viết liên quan
Top phim lãng mạn giúp hâm nóng tình cảm mùa Valentine
Top phim lãng mạn giúp hâm nóng tình cảm mùa Valentine
Phim đề tài tình yêu luôn là những tác phẩm có nội dung gần gũi, dung dị, phù hợp với nhiều đối tượng, đặc biệt là dành cho những trái tim đang thổn thức trong ngày tình nhân.
Download Bokutachi wa Benkyou ga Dekinai 2 Vetsub
Download Bokutachi wa Benkyou ga Dekinai 2 Vetsub
Những mẩu truyện cực đáng yêu về học đường với những thiên tài
Jinx: the Loose Cannon - Liên Minh Huyền Thoại
Jinx: the Loose Cannon - Liên Minh Huyền Thoại
Jinx, cô nàng tội phạm tính khí thất thường đến từ Zaun, sống để tàn phá mà chẳng bận tâm đến hậu quả.
Tóm tắt chương 248: Quyết chiến tại tử địa Shinjuku - Jujutsu Kaisen
Tóm tắt chương 248: Quyết chiến tại tử địa Shinjuku - Jujutsu Kaisen
Những tưởng Yuuji sẽ dùng Xứ Hình Nhân Kiếm đâm trúng lưng Sukuna nhưng hắn đã né được và ngoảnh nhìn lại phía sau