Tạo bởi | Neil Sloane |
---|---|
Website | oeis |
Thương mại | Không[1] |
Bắt đầu hoạt động | 1996 |
Bảng tra cứu dãy số nguyên trực tuyến (The On-Line Encyclopedia of Integer Sequences), hay đơn giản là Sloane's, là cơ sở dữ liệu chuỗi số nguyên trực tuyến. Bảng được tạo ra và bảo quản bởi Neil Sloane từ khi còn là nhà nghiên cứu tại phòng thí nghiệm AT&T. Dự định nghỉ hưu khỏi phòng thí nghiệm AT&T năm 2012 và nhu cầu một tổ chức độc lập, ông Sloane đồng ý chuyển giao quyền sở hữu trí tuệ và quyền lưu trữ OEIS cho Tổ chức OEIS vào tháng 10 năm 2009.[2] Ông Sloane tiếp tục tham gia trong OEIS với vai trò là chủ tịch của Tổ chức OEIS.
OEIS lưu trữ thông tin về dãy số nguyên được quan tâm bởi các nhà toán học chuyên nghiệp và nghiệp dư, và nó được trích dẫn một cách rộng rãi. Tính đến ngày 6 tháng 2 năm 2018[ref], OEIS chứa gần 300.000 dãy số, khiến nó trở thành cơ sở dữ liệu lớn nhất về dãy số nguyên.
Mỗi mục lưu trữ chứa thuật ngữ chính của dãy số, các từ khóa, động lực toán học, các liên kết văn học, và nhiều hơn nữa bao gồm cả lựa chọn tạo biểu đồ hoặc phát nhạc đại diện của dãy. Cơ sở dữ liệu được tìm kiếm thông qua từ khóa và các dãy con.
Neil Sloane bắt đầu thu thập các dãy số nguyên khi còn là nghiên cứu sinh trong năm 1965 để hỗ trợ nghiên cứu của mình trong Toán học tổ hợp. Lúc đầu dữ liệu được lưu trữ trong thẻ bấm lỗ. Ông đã xuất bản dãy tuyển chọn từ cơ sở dữ liệu thành sách hai lần:
Các cuốn này đã được đón nhận nồng nhiệt và đặc biệt là sau lần xuất bản thứ hai, các nhà toán học đã cung cấp cho Sloane một thứ tự mới cho chuỗi. Bộ sưu tập này trở nên khó kiểm soát trong dạng sách và khi dũ liệu có gần 16.000 mục Sloane quyết định chuyển nó thành dạng trực tuyến như dịch vụ e-mail (Tháng 8, 1994) và ngay sau đó là trang web (1996). Là sản phẩm phụ từ công việc cơ sở dữ liệu, Sloane thành lập Tạp chí dãy số nguyên (tiếng Anh: Journal of Integer Sequences) trong năm 1998.[3] Dữ liệu tiếp tục phát triển với tốc độ khoảng 10.000 mục một năm. Sloane đã quản lý các dãy số 'của ông' theo tư cách cá nhân gần 40 năm, nhưng sang năm 2002, một ban biên tập viên và tình nguyện viên đã giúp đỡ bảo quản dữ liệu.[4] Năm 2004, Sloane tổ chức chúc mừng việc bổ sung dãy số thứ 100.000 lên cơ sở dữ liệu, A100000, dãy số tính các dấu hiệu trên xương Ishango. Năm 2006, giao diện người dùng đã được đại tu và nhiều tính năng tìm kiếm nâng cao đã được thêm vào. Năm 2010 trang OEIS wiki tại OEIS.org được tạo ra để đơn giản hóa sự cộng tác của các biên tập viên OEIS và cộng tác viên.[5] Dãy số thứ 200.000, A200000, được thểm vào Tháng 11, 2011; nó ban đầu được nhập là A200715 nhưng sau đó chuyển thành A200000 sau tuần thảo luận trên danh sách thư SeqFan,[6][7] theo đề nghị của Tổng biên tập OEIS Charles Greathouse nhằm chọn một dãy số đặc biệt cho A200000.[8]
Bên cạnh dãy số nguyên, OEIS cũng lập danh mục về các dãy phân số, các chữ số của số siêu việt, các số phức và các dãy tương tự bằng cách chuyển thành dãy số nguyên. Dãy hữu tỉ được biểu diễn bằng hai dãy (có tên với từ khóa 'frac'): dãy tử số và dãy mẫu số. Ví dụ, dãy Farey cấp 5, , được liệt kê với dãy tử số 1, 1, 1, 2, 1, 3, 2, 3, 4 (A006842) và dãy mẫu số 5, 4, 3, 5, 2, 5, 3, 4, 5 (A006843). Các số vô tỉ quan trong như π = 3.1415926535897... được liệt kê dưới dạng dãy số nguyên như mở rộng thập phân (là 3, 1, 4, 1, 5, 9, 2, 6,... (A000796)), mở rộng nhị phân (là 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0,... (A004601)), hoặc là mở rộng của liên phân số (3, 7, 15, 1, 292, 1,... (A001203)).
OEIS giới hạn dữ liệu nhập là văn bản ASCII thông thường đến tận năm 2011, nhưng vẫn sử dụng ký hiệu toán học dạng tuyến tính (như f(n) cho hàm số với n là biến, vv). Các chữ cái Hy Lạp thường được gọi bằng tên đầy đủ, vd, mu cho kí tự μ, phi cho φ. Mỗi dãy số được xác định bởi ký tự A với sáu chữ số theo sau, hầu như luôn có các số 0 ở đầu, ví dụ A000315 chứ không phải là A315. Các thuật ngữ riêng của dãy được phân cách bằng dấu phẩy. Nhóm chữ số không được phân tách bởi dấu phẩy, các dấu chấm hoặc khoảng trắng. Tại phần bình luận, công thức, vv, a(n) đại diện cho thuật ngữ thứ n của dãy.
Số 0 thường được sử dụng để biểu diễn các phần tử không tồn tại trong dãy. Ví dụ, A104157 liệt kê "số nguyên tố nhỏ nhất trong n² số nguyên tố liên tiếp tạo thành ma trận kì ảo n×n của hằng số ít kì ảo nhất, hoặc là 0 nếu không tồn tại ma trận kì ảo như vậy." Giá trị của a(1) (ma trận kì ảo 1×1) là 2; a(3) là 1480028129. Nhưng không có ma trận kì ảo 2×2, nên a(2) bằng 0. Cách sử dụng đặc biệt này có cơ sở toán học vững chắc trong các hàm đếm nhất định. Ví dụ, hàm lượng totient Nφ(m) (A014197) là số các đáp án của φ(x) = m. Có 4 đáp án khi m=4, nhưng không có đáp án khi m=14, do vậy a(14) of A014197 bằng 0 - tức là không có đáp án. Thỉnh thoảng -1 được sử dụng cho mục đích này, như trong A094076.
OEIS duy trì thứ tự từ điển của các dãy số, do đó mỗi dãy số có dãy đứng trước và dãy đứng sau (theo "ngữ cảnh" của nó).[9] OEIS chuẩn hóa các dãy theo thứ tự từ điển, (thường) bỏ qua tất cả các số không dẫn đầu và số không cũng như dấu của mỗi phần tử. Dãy số của mã số phân phối trọng lượng thường bỏ đi số 0 đệ quy theo định kỳ.
Ví dụ, xem xét: số nguyên tố, số nguyên tố palindromic, dãy Fibonacci, dãy số người phục vụ lười, và các hệ số trong chuỗi mở rộng của . Liệt kể theo thứ tự từ điển của OEIS, chúng là:
trong khi đó sắp xếp không theo thứ tự từ điển thông thường sẽ sắp các dãy thành: #3, #5, #4, #1, #2.
Từ rất sớm trong lịch sử của OEIS, việc dãy số được xác định thông qua đánh số dãy đã được đề xuất. Sloane hồi tưởng: "Tôi đã phản đối việc thêm các dãy này trong một thời gian dài, một phần vì mong muốn duy trì chất lượng của dữ liệu và một phần bởi vì A22 chỉ có 11 phần tử!".[10] Một trong những dãy tự tham chiếu sớm nhất mà Sloane chấp nhận nhập vào OEIS là A031135 (sau là A091967) "a(n) = phần tử thứ n của dãy An hoặc bằng -1 nếu An hơn n phần tử". Điều này thúc đẩy việc tìm kiếm thêm phần tử của A000022. A100544 liệt kê phần tử đầu tiên cho trước trong dãy An, nhưng nó cần được cập nhật theo thời gian do các thay đổi ý kiến về các giá trị bù. Liệt kê dạng danh sách a(1) của dãy An có thể là lựa chọn tốt nếu thực tế không phải là một số dãy số có độ lệch 2 và lớn hơn. Điều này dẫn đến câu hỏi "Liệu dãy số An có chứa số n ?" và dãy A053873, "Các số n sao cho dãy OEIS An chứa n", và A053169, "n thuộc dãy này khi và chỉ khi n không nằm trong dãy An". Do đó, hợp số 2808 thuộc dãy A053873 vì A002808 là dãy hợp số, trong khi số không nguyên tố 40 thuộc dãy A053169 do nó không thuộc A000040, dãy số nguyên tố. Mỗi số n là một phần tử chính xác của một trong hai dãy và về nguyên tắc có thể được xác định dãy mà chứa n, với hai ngoại lệ (liên quan đến chính bản thân hai dãy):
Ta chọn mục A046970 vì nó chứa mọi trường mà một mục OEIS có thể có.[11]
A046970 Dirichlet inverse of the Jordan function J_2 (A007434). 1, -3, -8, -3, -24, 24, -48, -3, -8, 72, -120, 24, -168, 144, 192, -3, -288, 24, -360, 72, 384, 360, -528, 24, -24, 504, -8, 144, -840, -576, -960, -3, 960, 864, 1152, 24, -1368, 1080, 1344, 72, -1680, -1152, -1848, 360, 192, 1584, -2208, 24, -48, 72, 2304, 504, -2808, 24, 2880, 144, 2880, 2520, -3480, -576 OFFSET 1,2 COMMENTS B(n+2) = -B(n)*((n+2)*(n+1)/(4pi^2))*z(n+2)/z(n) = -B(n)*((n+2)*(n+1)/(4pi^2))*Sum(j=1, infinity) [ a(j)/j^(n+2) ] ... REFERENCES M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover Publications, 1965, pp. 805-811. LINKS M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. Wikipedia, Riemann zeta function. FORMULA Multiplicative with a(p^e) = 1-p^2. a(n) = Sum_{d|n} mu(d)*d^2. a(n) = product[p prime divides n, p^2-1] (gives unsigned version) [From Jon Perry (jonperrydc(AT)btinternet.com), Aug 24 2010] EXAMPLE a(3) = -8 because the divisors of 3 are {1, 3} and mu(1)*1^2 + mu(3)*3^2 = -8. ... MAPLE Jinvk:= proc(n, k) local a, f, p; a:= 1; for f in ifactors(n)[2] do p:= op(1, f); a:= a*(1-p^k); end do: a; end proc: A046970:= proc(n) Jinvk(n, 2); end proc: # R. J. Mathar, Jul 04 2011 MATHEMATICA muDD[d_]:= MoebiusMu[d]*d^2; Table[Plus @@ muDD[Divisors[n]], {n, 60}] (Lopez) Flatten[Table[{ x = FactorInteger[n]; p = 1; For[i = 1, i <= Length[x], i++, p = p*(x[[i]][[1]]^2 - 1)]; p}, {n, 1, 50, 1}]] [From Jon Perry (jonperrydc(AT)btinternet.com), Aug 24 2010] PROG (PARI) A046970(n)=sumdiv(n, d, d^2*moebius(d)) (Benoit Cloitre) CROSSREFS Cf. A027641 and A027642. Sequence in context: A035292 A144457 A146975 * A058936 A002017 A118582 Adjacent sequences: A046967 A046968 A046969 * A046971 A046972 A046973 KEYWORD sign,mult AUTHOR Douglas Stoll, dougstoll(AT)email.msn.com EXTENSIONS Corrected and extended by Vladeta Jovovic (vladeta(AT)eunet.rs), Jul 25 2001 Additional comments from Wilfredo Lopez (chakotay147138274(AT)yahoo.com), Jul 01 2005
A059097 | Số n sao cho hệ số nhị thức C(2n, n) không chia hết cho bình phương của số nguyên tố lẻ. | 1 tháng 1 năm 2001 |
A060001 | Fibonacci(n)!. | Mar 14, 2001 |
A066288 | Số không gian 3 chiều (hoặc khối đa khối) với n ô và nhóm đối xứng cấp 24. | 1 tháng 1 năm 2002 |
A075000 | Số nhỏ nhất sao cho n·a(n) là nối tiếp của n số nguyên liên tiếp... | Aug 31, 2002 |
A078470 | Liên phân số của ζ(3/2) | 1 tháng 1 năm 2003 |
A080000 | Số các hoán vị thỏa mãn −k ≤ p(i) − i ≤ r và p(i) − i | Feb 10, 2003 |
A090000 | Độ dài của nhóm các số 1 gần nhau lớn nhất trong mở rộng nhị phân của số nguyên tố thứ n | Nov 20, 2003 |
A091345 | Tích chập lũy thừa của dãy A069321(n) với chính nó, trong đó A069321(0) = 0. | 1 tháng 1 năm 2004 |
A100000 | Các đánh dấu của khối xương Ishango 22000 tuổi tìm thấy ở Congo. | Nov 7, 2004 |
A102231 | Cột 1 của tam giác A102230, và bằng chập của A032349 với A032349 dịch phải. | 1 tháng 1 năm 2005 |
A110030 | Số các số nguyên liên tiếp bắt đầu từ n cần để tổng thành một số Niven. | Jul 8, 2005 |
A112886 | Số nguyên dương không là số tam giác. | Jan 12, 2006 |
A120007 | Biến đổi Möbius trên tổng các thừa số nguyên tố của n. | Jun 2, 2006 |
Cuốn Handbook of Integer Sequences năm 1973 chứa khoảng 2400 dãy số, được đánh số theo thứ tự từ điển (chữ N cộng với 4 chữ số, đệm số không nếu cần), và Encyclopedia of Integer Sequences 1995 có 5487 chuỗi, cũng được đánh số theo thứ tự từ điển (chữ M cộng với 4 chữ số,đệm số không nếu cần). Những số M và N cũ, nếu có, được nằm trong trường ID giữa các dấu ngoặc đơn sau số A.
A016623 | 3, 8, 3, 9, 4, 5, 2, 3, 1, 2,... | Mở rộng thập phân của ln(93/2). |
A046543 | 1, 1, 1, 3, 8, 3, 10, 1, 110, 3, 406, 3 | Tử số và mẫu số đầu tiên của các phần tử trung tâm của tam giác Pascal 1/3 (theo hàng). |
A035292 | 1, 3, 8, 3, 12, 24, 16, 3, 41, 36, 24,... | Số lượng các lớp con tương tự Z4 có chỉ số n2. |
A046970 | 1, −3, −8, −3, −24, 24, −48, −3, −8, 72,... | Được tạo ra từ hàm zeta Riemann... |
A058936 | 0, 1, 3, 8, 3, 30, 20, 144, 90, 40, 840, 504, 420, 5760, 3360, 2688, 1260 |
Khai triển của S(n, 2) của Stirling dựa trên phân vùng số tương quan. |
A002017 | 1, 1, 1, 0, −3, −8, −3, 56, 217, 64, −2951, −12672,... | Khai triển của exp(sin x). |
A086179 | 3, 8, 4, 1, 4, 9, 9, 0, 0, 7, 5, 4, 3, 5, 0, 7, 8 | Mở rộng thập phân của giới hạn trên cho giá trị r hỗ trợ quỹ đạo chu kỳ 3 ổn định trong phương trình logistisc. |
Trong khi ở hệ nhị phân đa phần các số không phải là số palindrome.
Phiên bản trước của trang tra cứu chính OEIS cung cấp ba cách để tra cứu với nút phải phải được chọn. Tuy có trang tìm kiếm nâng cao nhưng các chức năng hữu dụng của nó đã được tích hợp vào trang tìm kiếm chính trong lần thiết kế lại giao diện vào tháng 1 năm 2006.
Vua
Trong năm 2009, cơ sở dữ liệu OEIS đã được một nhà toán học nghiệp dư sử dụng để đo "tầm quan trọng" của mỗi số nguyên.[13] Kết quả thể hiện trong biểu đồ bên phải cho thấy một "lỗ hổng" rõ ràng giữa hai vùng điểm[14] khác biệt gồm các số không đáng chú ý (các chấm xanh dương) và các số "thú vị" mà xuất hiện thường xuyên hơn trong các dãy OEIS. Nó chứa các số nguyên tố chính (màu đỏ), các số có dạng a^n (màu xanh lá cây) và các số có tính hợp số cao (màu vàng). Hiện tượng này được Nicolas Gauvrit, Jean-Paul Delahaye nghiên cứu và Hector Zenil đã giải thích sự vận động của 2 vùng số theo độ phức tạp thuật toán và lỗ hổng có nguyên nhân yếu tố xã hội dựa trên sự ưu tiên của ý thức con người cho các dãy số nguyên tố, các số chẵn, hình học và số kiểu Fibonacci và tương tự.[15] Lỗ hổng Sloane là một tiết mục trên video của Numberphile.[16]
With Dr. James Grime, University of Nottingham