Định lý Ceva

Định lý Ceva[1] là một định lý phổ biến trong hình học cơ bản. Cho một tam giác ABC, các điểm D, E, và F lần lượt nằm trên các đường thẳng BC, CA, và AB. Định lý phát biểu rằng các đường thẳng AD, BECF là những đường thẳng đồng quy khi và chỉ khi:

Ngoài ra, định lý Ceva còn được phát biểu một cách tương đương trong lượng giác rằng: AD,BE,CF đồng quy khi và chỉ khi

.

Định lý Ceva

Một đường thẳng đi qua đỉnh của tam giác gọi là đường thẳng Cevian ứng với đỉnh đó.Một trong hình vẽ tam giác là một tam giác Cevian của tam giác ABC.

Chứng minh

[sửa | sửa mã nguồn]

Giả sử ta có: , đồng quy tại một điểm nào đó (trong hay ngoài tam giác). Do có chung chiều cao (độ dài của đường cao), ta có: Tương tự,

Ta suy ra

Tương tự,

Nhân ,, vế theo vế,ta được:. Ta có điều phải chứng minh.

Ngược lại, giả sử rằng ta đã có những điểm , thỏa mãn đẳng thức. Gọi giao điểm của , và gọi giao điểm của . Theo chứng minh trên,

Kết hợp với đẳng thức trên, ta nhận được:

Do đó , nên trùng nhau. Vì vậy , đồng quy tại , và định lý đã được chứng minh (là đúng theo cả hai chiều).

Tham khảo thêm

[sửa | sửa mã nguồn]

Tham khảo

[sửa | sửa mã nguồn]
  1. ^ Định lý mang tên nhà toán học người Italia là Giovanni Ceva (1647 - 1734), người tìm ra định lý này vào năm 1698
  • Russell, John Wellesley (1905). "Ch. 1 §7 Ceva's Theorem". Pure Geometry. Clarendon Press.
  • Grünbaum, Branko; Shephard, G. C. (1995). "Ceva, Menelaus and the Area Principle". Mathematics Magazine. Quyển 68 số 4. tr. 254–268. doi:10.2307/2690569. JSTOR 2690569Bản mẫu:Inconsistent citations{{Chú thích tạp chí}}: Quản lý CS1: postscript (liên kết).
  • Hogendijk, J. B. (1995). "Al-Mutaman ibn Hűd, 11the century king of Saragossa and brilliant mathematician". Historia Mathematica. Quyển 22. tr. 1–18. doi:10.1006/hmat.1995.1001.
  • Landy, Steven (tháng 12 năm 1988). "A Generalization of Ceva's Theorem to Higher Dimensions". The American Mathematical Monthly. Quyển 95 số 10. tr. 936–939. doi:10.2307/2322390.
  • Masal'tsev, L. A. (1994). "Incidence theorems in spaces of constant curvature". Journal of Mathematical Sciences. Quyển 72 số 4. tr. 3201–3206. doi:10.1007/BF01249519.
  • Wernicke, Paul (tháng 11 năm 1927). "The Theorems of Ceva and Menelaus and Their Extension". The American Mathematical Monthly. Quyển 34 số 9. tr. 468–472. doi:10.2307/2300222.
Chúng tôi bán
Bài viết liên quan
Review hòn đảo nhiệt đới Siargao Philippines 3 ngày 2 đêm
Review hòn đảo nhiệt đới Siargao Philippines 3 ngày 2 đêm
Siargao là một hòn đảo phía Đông Nam Philippines, nổi tiếng với hình dáng giọt nước mắt tear-drop
Mối quan hệ giữa Itadori, Fushiguro, Kugisaki được xây dựng trên việc chia sẻ cùng địa ngục tội lỗi
Mối quan hệ giữa Itadori, Fushiguro, Kugisaki được xây dựng trên việc chia sẻ cùng địa ngục tội lỗi
Akutami Gege-sensei xây dựng nhân vật rất tỉ mỉ, nhất là dàn nhân vật chính với cách lấy thật nhiều trục đối chiếu giữa từng cá thể một với từng sự kiện khác nhau
Long Chủng và Slime trong Tensura sự bình đẳng bất bình thường.
Long Chủng và Slime trong Tensura sự bình đẳng bất bình thường.
Những cá thể độc tôn mạnh mẽ nhất trong Tensura, hiện nay có tổng cộng 4 Long Chủng được xác nhận
Cảm nhận sách: lối sống tối giản thời công nghệ số - Cal Newport
Cảm nhận sách: lối sống tối giản thời công nghệ số - Cal Newport
Cuốn sách “lối sống tối giản thời công nghệ số” là một tập hợp những quan điểm, suy tư của Cal Newport về cách sử dụng công nghệ ngày nay